/* code16k.c - Handles Code 16k stacked symbology */ /* libzint - the open source barcode library Copyright (C) 2008 Robin Stuart This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* Updated to comply with BS EN 12323:2005 */ /* up to 77 characters or 154 numbers */ #include #include #include #include "common.h" #define TRUE 1 #define FALSE 0 #define SHIFTA 90 #define LATCHA 91 #define SHIFTB 92 #define LATCHB 93 #define SHIFTC 94 #define LATCHC 95 #define AORB 96 #define ABORC 97 #define CANDB 98 #define CANDBB 99 static int list[2][170]; /* EN 12323 Table 1 - "Code 16K" character encodations */ static char *C16KTable[107] = {"212222", "222122", "222221", "121223", "121322", "131222", "122213", "122312", "132212", "221213", "221312", "231212", "112232", "122132", "122231", "113222", "123122", "123221", "223211", "221132", "221231", "213212", "223112", "312131", "311222", "321122", "321221", "312212", "322112", "322211", "212123", "212321", "232121", "111323", "131123", "131321", "112313", "132113", "132311", "211313", "231113", "231311", "112133", "112331", "132131", "113123", "113321", "133121", "313121", "211331", "231131", "213113", "213311", "213131", "311123", "311321", "331121", "312113", "312311", "332111", "314111", "221411", "431111", "111224", "111422", "121124", "121421", "141122", "141221", "112214", "112412", "122114", "122411", "142112", "142211", "241211", "221114", "413111", "241112", "134111", "111242", "121142", "121241", "114212", "124112", "124211", "411212", "421112", "421211", "212141", "214121", "412121", "111143", "111341", "131141", "114113", "114311", "411113", "411311", "113141", "114131", "311141", "411131", "211412", "211214", "211232", "211133"}; /* EN 12323 Table 3 and Table 4 - Start patterns and stop patterns */ static char *C16KStartStop[8] = {"3211", "2221", "2122", "1411", "1132", "1231", "1114", "3112"}; /* EN 12323 Table 5 - Start and stop values defining row numbers */ static int C16KStartValues[16] = {0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7}; static int C16KStopValues[16] = {0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 0, 1, 2, 3}; void grwp16(int *indexliste) { int i, j; /* bring together same type blocks */ if(*(indexliste) > 1) { i = 1; while(i < *(indexliste)) { if(list[1][i - 1] == list[1][i]) { /* bring together */ list[0][i - 1] = list[0][i - 1] + list[0][i]; j = i + 1; /* decreace the list */ while(j < *(indexliste)) { list[0][j - 1] = list[0][j]; list[1][j - 1] = list[1][j]; j++; } *(indexliste) = *(indexliste) - 1; i--; } i++; } } } void dxsmooth16(int *indexliste) { /* Implements rules from ISO 15417 Annex E */ int i, current, last, next, length; for(i = 0; i < *(indexliste); i++) { current = list[1][i]; length = list[0][i]; if(i != 0) { last = list[1][i - 1]; } else { last = FALSE; } if(i != *(indexliste) - 1) { next = list[1][i + 1]; } else { next = FALSE; } if(i == 0) { /* first block */ if((*(indexliste) == 1) && ((length == 2) && (current == ABORC))) { /* Rule 1a */ list[1][i] = LATCHC; } if(current == ABORC) { if(length >= 4) {/* Rule 1b */ list[1][i] = LATCHC; } else { list[1][i] = AORB; current = AORB; } } if(current == SHIFTA) { /* Rule 1c */ list[1][i] = LATCHA; } if((current == AORB) && (next == SHIFTA)) { /* Rule 1c */ list[1][i] = LATCHA; current = LATCHA; } if(current == AORB) { /* Rule 1d */ list[1][i] = LATCHB; } } else { if((current == ABORC) && (length >= 4)) { /* Rule 3 */ list[1][i] = LATCHC; current = LATCHC; } if(current == ABORC) { list[1][i] = AORB; current = AORB; } if((current == AORB) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == AORB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; } if((current == AORB) && (next == SHIFTA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == AORB) && (next == SHIFTB)) { list[1][i] = LATCHB; current = LATCHB; } if(current == AORB) { list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (length > 1)) { /* Rule 4 */ list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (length > 1)) { /* Rule 5 */ list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (last == LATCHA)) { list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (last == LATCHB)) { list[1][i] = LATCHB; current = LATCHB; } if((current == SHIFTA) && (last == LATCHC)) { list[1][i] = LATCHA; current = LATCHA; } if((current == SHIFTB) && (last == LATCHC)) { list[1][i] = LATCHB; current = LATCHB; } } /* Rule 2 is implimented elsewhere, Rule 6 is implied */ } grwp16(indexliste); } void c16k_set_a(unsigned char source, unsigned int values[], unsigned int *bar_chars) { if(source > 127) { if(source < 160) { values[(*bar_chars)] = source + 64 - 128; } else { values[(*bar_chars)] = source - 32 - 128; } } else { if(source < 32) { values[(*bar_chars)] = source + 64; } else { values[(*bar_chars)] = source - 32; } } (*bar_chars)++; } void c16k_set_b(unsigned char source, unsigned int values[], unsigned int *bar_chars) { if(source > 127) { values[(*bar_chars)] = source - 32 - 128; } else { values[(*bar_chars)] = source - 32; } (*bar_chars)++; } void c16k_set_c(unsigned char source_a, unsigned char source_b, unsigned int values[], unsigned int *bar_chars) { int weight; weight = (10 * ctoi(source_a)) + ctoi(source_b); values[(*bar_chars)] = weight; (*bar_chars)++; } int code16k(struct zint_symbol *symbol, unsigned char source[], int length) { char width_pattern[100]; int current_row, rows_needed, flip_flop, looper, first_check, second_check; int indexliste, indexchaine, pads_needed, f_state; char set[160] = { ' ' }, fset[160] = { ' ' }, mode, last_set, last_fset, current_set; unsigned int i, j, k, m, e_count, read, mx_reader, writer; unsigned int values[160] = { 0 }; unsigned int bar_characters; float glyph_count; int errornum, first_sum, second_sum; int input_length; int gs1, c_count; errornum = 0; strcpy(width_pattern, ""); input_length = length; if(symbol->input_mode == GS1_MODE) { gs1 = 1; } else { gs1 = 0; } if(input_length > 157) { strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } e_count = 0; bar_characters = 0; /* Detect extended ASCII characters */ for(i = 0; i < input_length; i++) { if(source[i] >=128) { fset[i] = 'f'; } } fset[i] = '\0'; /* Decide when to latch to extended mode */ for(i = 0; i < input_length; i++) { j = 0; if(fset[i] == 'f') { do { j++; } while(fset[i + j] == 'f'); if((j >= 5) || ((j >= 3) && ((i + j) == (input_length - 1)))) { for(k = 0; k <= j; k++) { fset[i + k] = 'F'; } } } } /* Decide if it is worth reverting to 646 encodation for a few characters */ if(input_length > 1) { for(i = 1; i < input_length; i++) { if((fset[i - 1] == 'F') && (fset[i] == ' ')) { /* Detected a change from 8859-1 to 646 - count how long for */ for(j = 0; (fset[i + j] == ' ') && ((i + j) < input_length); j++); if((j < 5) || ((j < 3) && ((i + j) == (input_length - 1)))) { /* Change to shifting back rather than latching back */ for(k = 0; k < j; k++) { fset[i + k] = 'n'; } } } } } /* Detect mode A, B and C characters */ indexliste = 0; indexchaine = 0; mode = parunmodd(source[indexchaine]); if((gs1) && (source[indexchaine] == '[')) { mode = ABORC; } /* FNC1 */ for(i = 0; i < 160; i++) { list[0][i] = 0; } do { list[1][indexliste] = mode; while ((list[1][indexliste] == mode) && (indexchaine < input_length)) { list[0][indexliste]++; indexchaine++; mode = parunmodd(source[indexchaine]); if((gs1) && (source[indexchaine] == '[')) { mode = ABORC; } /* FNC1 */ } indexliste++; } while (indexchaine < input_length); dxsmooth16(&indexliste); /* Put set data into set[] */ read = 0; for(i = 0; i < indexliste; i++) { for(j = 0; j < list[0][i]; j++) { switch(list[1][i]) { case SHIFTA: set[read] = 'a'; break; case LATCHA: set[read] = 'A'; break; case SHIFTB: set[read] = 'b'; break; case LATCHB: set[read] = 'B'; break; case LATCHC: set[read] = 'C'; break; } read++; } } /* Adjust for strings which start with shift characters - make them latch instead */ if(set[0] == 'a') { i = 0; do { set[i] = 'A'; i++; } while (set[i] == 'a'); } if(set[0] == 'b') { i = 0; do { set[i] = 'B'; i++; } while (set[i] == 'b'); } /* Watch out for odd-length Mode C blocks */ c_count = 0; for(i = 0; i < read; i++) { if(set[i] == 'C') { if(source[i] == '[') { if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } c_count = 0; } else { c_count++; } } else { if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } c_count = 0; } } if(c_count & 1) { if((i - c_count) != 0) { set[i - c_count] = 'B'; } else { set[i - 1] = 'B'; } } for(i = 1; i < read - 1; i++) { if((set[i] == 'C') && ((set[i - 1] == 'B') && (set[i + 1] == 'B'))) { set[i] = 'B'; } } /* Make sure the data will fit in the symbol */ last_set = ' '; last_fset = ' '; glyph_count = 0.0; for(i = 0; i < input_length; i++) { if((set[i] == 'a') || (set[i] == 'b')) { glyph_count = glyph_count + 1.0; } if((fset[i] == 'f') || (fset[i] == 'n')) { glyph_count = glyph_count + 1.0; } if(((set[i] == 'A') || (set[i] == 'B')) || (set[i] == 'C')) { if(set[i] != last_set) { last_set = set[i]; glyph_count = glyph_count + 1.0; } } if(i == 0) { if((set[i] == 'B') && (set[1] == 'C')) { glyph_count = glyph_count - 1.0; } if((set[i] == 'B') && (set[1] == 'B')) { if(set[2] == 'C') { glyph_count = glyph_count - 1.0; } } if(fset[i] == 'F') { last_fset = 'F'; glyph_count = glyph_count + 2.0; } } else { if((fset[i] == 'F') && (fset[i - 1] != 'F')) { last_fset = 'F'; glyph_count = glyph_count + 2.0; } if((fset[i] != 'F') && (fset[i - 1] == 'F')) { last_fset = ' '; glyph_count = glyph_count + 2.0; } } if((set[i] == 'C') && (!((gs1) && (source[i] == '[')))) { glyph_count = glyph_count + 0.5; } else { glyph_count = glyph_count + 1.0; } } if((gs1) && (set[0] != 'A')) { /* FNC1 can be integrated with mode character */ glyph_count--; } if(glyph_count > 77.0) { strcpy(symbol->errtxt, "Input too long"); return ERROR_TOO_LONG; } /* Calculate how tall the symbol will be */ glyph_count = glyph_count + 2.0; i = glyph_count; rows_needed = (i/5); if(i%5 > 0) { rows_needed++; } if(rows_needed == 1) { rows_needed = 2; } /* start with the mode character - Table 2 */ m = 0; switch(set[0]) { case 'A': m = 0; break; case 'B': m = 1; break; case 'C': m = 2; break; } if(symbol->output_options & READER_INIT) { if(m == 2) { m = 5; } if(gs1) { strcpy(symbol->errtxt, "Cannot use both GS1 mode and Reader Initialisation"); return ERROR_INVALID_OPTION; } else { if((set[0] == 'B') && (set[1] == 'C')) { m = 6; } } values[bar_characters] = (7 * (rows_needed - 2)) + m; /* see 4.3.4.2 */ values[bar_characters + 1] = 96; /* FNC3 */ bar_characters += 2; } else { if(gs1) { /* Integrate FNC1 */ switch(set[0]) { case 'B': m = 3; break; case 'C': m = 4; break; } } else { if((set[0] == 'B') && (set[1] == 'C')) { m = 5; } if(((set[0] == 'B') && (set[1] == 'B')) && (set[2] == 'C')) { m = 6; } } values[bar_characters] = (7 * (rows_needed - 2)) + m; /* see 4.3.4.2 */ bar_characters++; } current_set = set[0]; f_state = 0; /* f_state remembers if we are in Extended ASCII mode (value 1) or in ISO/IEC 646 mode (value 0) */ if(fset[0] == 'F') { switch(current_set) { case 'A': values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 1; } read = 0; /* Encode the data */ do { if((read != 0) && (set[read] != set[read - 1])) { /* Latch different code set */ switch(set[read]) { case 'A': values[bar_characters] = 101; bar_characters++; current_set = 'A'; break; case 'B': values[bar_characters] = 100; bar_characters++; current_set = 'B'; break; case 'C': if(!((read == 1) && (set[0] == 'B'))) { /* Not Mode C/Shift B */ if(!((read == 2) && ((set[0] == 'B') && (set[1] == 'B')))) { /* Not Mode C/Double Shift B */ values[bar_characters] = 99; bar_characters++; } } current_set = 'C'; break; } } /* printf("tp8\n"); */ if(read != 0) { if((fset[read] == 'F') && (f_state == 0)) { /* Latch beginning of extended mode */ switch(current_set) { case 'A': values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 1; } if((fset[read] == ' ') && (f_state == 1)) { /* Latch end of extended mode */ switch(current_set) { case 'A': values[bar_characters] = 101; values[bar_characters + 1] = 101; break; case 'B': values[bar_characters] = 100; values[bar_characters + 1] = 100; break; } bar_characters += 2; f_state = 0; } } if((fset[i] == 'f') || (fset[i] == 'n')) { /* Shift extended mode */ switch(current_set) { case 'A': values[bar_characters] = 101; /* FNC 4 */ break; case 'B': values[bar_characters] = 100; /* FNC 4 */ break; } bar_characters++; } if((set[i] == 'a') || (set[i] == 'b')) { /* Insert shift character */ values[bar_characters] = 98; bar_characters++; } if(!((gs1) && (source[read] == '['))) { switch(set[read]) { /* Encode data characters */ case 'A': case 'a': c16k_set_a(source[read], values, &bar_characters); read++; break; case 'B': case 'b': c16k_set_b(source[read], values, &bar_characters); read++; break; case 'C': c16k_set_c(source[read], source[read + 1], values, &bar_characters); read += 2; break; } } else { values[bar_characters] = 102; bar_characters++; read++; } /* printf("tp9 read=%d surrent set=%c\n", read, set[read]); */ } while (read < ustrlen(source)); pads_needed = 5 - ((bar_characters + 2) % 5); if(pads_needed == 5) { pads_needed = 0; } if((bar_characters + pads_needed) < 8) { pads_needed += 8 - (bar_characters + pads_needed); } for(i = 0; i < pads_needed; i++) { values[bar_characters] = 106; bar_characters++; } /* Calculate check digits */ first_sum = 0; second_sum = 0; for(i = 0; i < bar_characters; i++) { first_sum += (i+2) * values[i]; second_sum += (i+1) * values[i]; } first_check = first_sum % 107; second_sum += first_check * (bar_characters + 1); second_check = second_sum % 107; values[bar_characters] = first_check; values[bar_characters + 1] = second_check; bar_characters += 2; for(current_row = 0; current_row < rows_needed; current_row++) { strcpy(width_pattern, ""); concat(width_pattern, C16KStartStop[C16KStartValues[current_row]]); concat(width_pattern, "1"); for(i = 0; i < 5; i++) { concat(width_pattern, C16KTable[values[(current_row * 5) + i]]); /* printf("[%d] ", values[(current_row * 5) + i]); */ } concat(width_pattern, C16KStartStop[C16KStopValues[current_row]]); /* printf("\n"); */ /* Write the information into the symbol */ writer = 0; flip_flop = 1; for (mx_reader = 0; mx_reader < strlen(width_pattern); mx_reader++) { for(looper = 0; looper < ctoi(width_pattern[mx_reader]); looper++) { if(flip_flop == 1) { set_module(symbol, current_row, writer); writer++; } else { writer++; } } if(flip_flop == 0) { flip_flop = 1; } else { flip_flop = 0; } } symbol->row_height[current_row] = 10; } symbol->rows = rows_needed; symbol->width = 70; return errornum; }