UEFITool/common/generated/intel_acm.cpp
Nikolaj Schlej 934ce1f3f8 Kaitai-based Intel ACM and BootGuard parsers
As the first step towards automated parsing, this change set replaces outdated BootGuard-related parsers with shiny new KaitaiStruct-based ones.
It also does the following:
- improves Intel FIT definitions by using the relevant specification
- adds sha1, sha384, sha512 and sm3 digest implementations
- updates LZMA SDK to v22.01
- moves GUIDs out of include files to prevent multiple instantiations
- enforces C++11
- adds Kaitai-based parsers for Intel FIT, BootGuard v1 and BootGuard v2 structures
- makes many small refactorings here, there and everywhere
2022-09-10 13:14:29 +02:00

92 lines
2.8 KiB
C++

// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "intel_acm.h"
#include "../kaitai/exceptions.h"
intel_acm_t::intel_acm_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, intel_acm_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this; (void)p__root;
m_header = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_acm_t::_read() {
m_header = new header_t(m__io, this, m__root);
m_body = m__io->read_bytes((4 * ((header()->module_size() - header()->header_size()) - header()->scratch_space_size())));
}
intel_acm_t::~intel_acm_t() {
_clean_up();
}
void intel_acm_t::_clean_up() {
if (m_header) {
delete m_header; m_header = 0;
}
}
intel_acm_t::header_t::header_t(kaitai::kstream* p__io, intel_acm_t* p__parent, intel_acm_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_acm_t::header_t::_read() {
m_module_type = m__io->read_u2le();
if (!(module_type() == 2)) {
throw kaitai::validation_not_equal_error<uint16_t>(2, module_type(), _io(), std::string("/types/header/seq/0"));
}
m_module_subtype = static_cast<intel_acm_t::module_subtype_t>(m__io->read_u2le());
m_header_size = m__io->read_u4le();
m_header_version = m__io->read_u4le();
m_chipset_id = m__io->read_u2le();
m_flags = m__io->read_u2le();
m_module_vendor = m__io->read_u4le();
if (!(module_vendor() == 32902)) {
throw kaitai::validation_not_equal_error<uint32_t>(32902, module_vendor(), _io(), std::string("/types/header/seq/6"));
}
m_date_day = m__io->read_u1();
m_date_month = m__io->read_u1();
m_date_year = m__io->read_u2le();
m_module_size = m__io->read_u4le();
m_acm_svn = m__io->read_u2le();
m_se_svn = m__io->read_u2le();
m_code_control_flags = m__io->read_u4le();
m_error_entry_point = m__io->read_u4le();
m_gdt_max = m__io->read_u4le();
m_gdt_base = m__io->read_u4le();
m_segment_sel = m__io->read_u4le();
m_entry_point = m__io->read_u4le();
m_reserved = m__io->read_bytes(64);
m_key_size = m__io->read_u4le();
m_scratch_space_size = m__io->read_u4le();
m_rsa_public_key = m__io->read_bytes((4 * key_size()));
n_rsa_exponent = true;
if (header_version() == 0) {
n_rsa_exponent = false;
m_rsa_exponent = m__io->read_u4le();
}
m_rsa_signature = m__io->read_bytes((4 * key_size()));
m_scratch_space = m__io->read_bytes((4 * scratch_space_size()));
}
intel_acm_t::header_t::~header_t() {
_clean_up();
}
void intel_acm_t::header_t::_clean_up() {
if (!n_rsa_exponent) {
}
}