UEFITool/common/generated/intel_keym_v2.cpp
Nikolaj Schlej 934ce1f3f8 Kaitai-based Intel ACM and BootGuard parsers
As the first step towards automated parsing, this change set replaces outdated BootGuard-related parsers with shiny new KaitaiStruct-based ones.
It also does the following:
- improves Intel FIT definitions by using the relevant specification
- adds sha1, sha384, sha512 and sm3 digest implementations
- updates LZMA SDK to v22.01
- moves GUIDs out of include files to prevent multiple instantiations
- enforces C++11
- adds Kaitai-based parsers for Intel FIT, BootGuard v1 and BootGuard v2 structures
- makes many small refactorings here, there and everywhere
2022-09-10 13:14:29 +02:00

214 lines
5.8 KiB
C++

// This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
#include "intel_keym_v2.h"
#include "../kaitai/exceptions.h"
intel_keym_v2_t::intel_keym_v2_t(kaitai::kstream* p__io, kaitai::kstruct* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = this; (void)p__root;
m_header = 0;
m_reserved = 0;
m_km_hashes = 0;
m_key_signature = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::_read() {
m_header = new header_t(m__io, this, m__root);
m_key_signature_offset = m__io->read_u2le();
m_reserved = new std::vector<uint8_t>();
const int l_reserved = 3;
for (int i = 0; i < l_reserved; i++) {
m_reserved->push_back(m__io->read_u1());
}
m_km_version = m__io->read_u1();
m_km_svn = m__io->read_u1();
m_km_id = m__io->read_u1();
m_fpf_hash_algorithm_id = m__io->read_u2le();
m_num_km_hashes = m__io->read_u2le();
m_km_hashes = new std::vector<km_hash_t*>();
const int l_km_hashes = num_km_hashes();
for (int i = 0; i < l_km_hashes; i++) {
m_km_hashes->push_back(new km_hash_t(m__io, this, m__root));
}
m_key_signature = new key_signature_t(m__io, this, m__root);
}
intel_keym_v2_t::~intel_keym_v2_t() {
_clean_up();
}
void intel_keym_v2_t::_clean_up() {
if (m_header) {
delete m_header; m_header = 0;
}
if (m_reserved) {
delete m_reserved; m_reserved = 0;
}
if (m_km_hashes) {
for (std::vector<km_hash_t*>::iterator it = m_km_hashes->begin(); it != m_km_hashes->end(); ++it) {
delete *it;
}
delete m_km_hashes; m_km_hashes = 0;
}
if (m_key_signature) {
delete m_key_signature; m_key_signature = 0;
}
}
intel_keym_v2_t::key_signature_t::key_signature_t(kaitai::kstream* p__io, intel_keym_v2_t* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
m_public_key = 0;
m_signature = 0;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::key_signature_t::_read() {
m_version = m__io->read_u1();
m_key_id = m__io->read_u2le();
m_public_key = new public_key_t(m__io, this, m__root);
m_sig_scheme = m__io->read_u2le();
m_signature = new signature_t(m__io, this, m__root);
}
intel_keym_v2_t::key_signature_t::~key_signature_t() {
_clean_up();
}
void intel_keym_v2_t::key_signature_t::_clean_up() {
if (m_public_key) {
delete m_public_key; m_public_key = 0;
}
if (m_signature) {
delete m_signature; m_signature = 0;
}
}
intel_keym_v2_t::km_hash_t::km_hash_t(kaitai::kstream* p__io, intel_keym_v2_t* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::km_hash_t::_read() {
m_usage_flags = m__io->read_u8le();
m_hash_algorithm_id = m__io->read_u2le();
m_len_hash = m__io->read_u2le();
m_hash = m__io->read_bytes(len_hash());
}
intel_keym_v2_t::km_hash_t::~km_hash_t() {
_clean_up();
}
void intel_keym_v2_t::km_hash_t::_clean_up() {
}
intel_keym_v2_t::signature_t::signature_t(kaitai::kstream* p__io, intel_keym_v2_t::key_signature_t* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::signature_t::_read() {
m_version = m__io->read_u1();
m_size_bits = m__io->read_u2le();
m_hash_algorithm_id = m__io->read_u2le();
m_signature = m__io->read_bytes((size_bits() / 8));
}
intel_keym_v2_t::signature_t::~signature_t() {
_clean_up();
}
void intel_keym_v2_t::signature_t::_clean_up() {
}
intel_keym_v2_t::public_key_t::public_key_t(kaitai::kstream* p__io, intel_keym_v2_t::key_signature_t* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::public_key_t::_read() {
m_version = m__io->read_u1();
m_size_bits = m__io->read_u2le();
m_exponent = m__io->read_u4le();
m_modulus = m__io->read_bytes((size_bits() / 8));
}
intel_keym_v2_t::public_key_t::~public_key_t() {
_clean_up();
}
void intel_keym_v2_t::public_key_t::_clean_up() {
}
intel_keym_v2_t::header_t::header_t(kaitai::kstream* p__io, intel_keym_v2_t* p__parent, intel_keym_v2_t* p__root) : kaitai::kstruct(p__io) {
m__parent = p__parent;
m__root = p__root;
try {
_read();
} catch(...) {
_clean_up();
throw;
}
}
void intel_keym_v2_t::header_t::_read() {
m_structure_id = static_cast<intel_keym_v2_t::structure_ids_t>(m__io->read_u8le());
if (!(structure_id() == intel_keym_v2_t::STRUCTURE_IDS_KEYM)) {
throw kaitai::validation_not_equal_error<intel_keym_v2_t::structure_ids_t>(intel_keym_v2_t::STRUCTURE_IDS_KEYM, structure_id(), _io(), std::string("/types/header/seq/0"));
}
m_version = m__io->read_u1();
{
uint8_t _ = version();
if (!(_ >= 32)) {
throw kaitai::validation_expr_error<uint8_t>(version(), _io(), std::string("/types/header/seq/1"));
}
}
m_header_specific = m__io->read_u1();
m_total_size = m__io->read_u2le();
if (!(total_size() == 0)) {
throw kaitai::validation_not_equal_error<uint16_t>(0, total_size(), _io(), std::string("/types/header/seq/3"));
}
}
intel_keym_v2_t::header_t::~header_t() {
_clean_up();
}
void intel_keym_v2_t::header_t::_clean_up() {
}