UT 0.21.5 /UP 0.3.9 untested

- fixed various crashes reported in #39
- changes aren't tested yet, please don't use until #39 is fixed
This commit is contained in:
Nikolaj Schlej 2015-11-12 09:37:38 +01:00
parent 7ebbc58b9b
commit 19cc031244
5 changed files with 181 additions and 27 deletions

View file

@ -86,6 +86,7 @@ typedef unsigned int UINTN;
#define ERR_NOTHING_TO_PATCH 41
#define ERR_DEPEX_PARSE_FAILED 42
#define ERR_TRUNCATED_IMAGE 43
#define ERR_BAD_RELOCATION_ENTRY 44
#define ERR_NOT_IMPLEMENTED 0xFF
// UDK porting definitions

View file

@ -21,7 +21,7 @@ WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
// Flash descriptor header
typedef struct _FLASH_DESCRIPTOR_HEADER {
UINT8 FfVector[16]; // Must be 16 0xFFs
UINT8 FfVector[16]; // Must be 16 0xFFs
UINT32 Signature; // 0x0FF0A55A
} FLASH_DESCRIPTOR_HEADER;
@ -53,6 +53,8 @@ typedef struct _FLASH_DESCRIPTOR_MAP {
UINT32: 16;
} FLASH_DESCRIPTOR_MAP;
#define FLASH_DESCRIPTOR_MAX_BASE 0xE0
// Component section
// Flash parameters DWORD structure
typedef struct _FLASH_PARAMETERS {
@ -114,7 +116,7 @@ typedef struct _FLASH_DESCRIPTOR_COMPONENT_SECTION_V2 {
// If limit is zero - region is not present
typedef struct _FLASH_DESCRIPTOR_REGION_SECTION {
UINT16 DescriptorBase; // Descriptor
UINT16 DescriptorLimit; //
UINT16 DescriptorLimit; //
UINT16 BiosBase; // BIOS
UINT16 BiosLimit; //
UINT16 MeBase; // ME

2
ffs.h
View file

@ -109,7 +109,7 @@ typedef struct _EFI_FIRMWARE_VOLUME_HEADER {
UINT16 ExtHeaderOffset; //Reserved in Revision 1
UINT8 Reserved;
UINT8 Revision;
//EFI_FV_BLOCK_MAP_ENTRY FvBlockMap[1];
//EFI_FV_BLOCK_MAP_ENTRY FvBlockMap[2];
} EFI_FIRMWARE_VOLUME_HEADER;
// Standard file system GUIDs

View file

@ -76,6 +76,7 @@ QString errorMessage(UINT8 errorCode)
case ERR_NOTHING_TO_PATCH: return QObject::tr("Nothing to patch");
case ERR_DEPEX_PARSE_FAILED: return QObject::tr("Dependency expression parsing failed");
case ERR_TRUNCATED_IMAGE: return QObject::tr("Image is truncated");
case ERR_BAD_RELOCATION_ENTRY: return QObject::tr("Bad image relocation entry");
default: return QObject::tr("Unknown error %1").arg(errorCode);
}
}
@ -257,13 +258,31 @@ UINT8 FfsEngine::parseIntelImage(const QByteArray & intelImage, QModelIndex & in
// Check for buffer size to be greater or equal to descriptor region size
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
msg(tr("parseIntelImage: input file is smaller then minimum descriptor size of %1h (%2) bytes").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE));
msg(tr("parseIntelImage: input file is smaller than minimum descriptor size of 1000h (4096) bytes"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Parse descriptor map
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
// Check sanity of base values
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
msg(tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
msg(tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
msg(tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
@ -807,19 +826,21 @@ UINT8 FfsEngine::parseBios(const QByteArray & bios, const QModelIndex & parent)
// Get volume size
result = getVolumeSize(bios, volumeOffset, volumeSize, bmVolumeSize);
if (result)
if (result) {
msg(tr("parseBios: getVolumeSize failed with error \"%1\"").arg(errorMessage(result)), parent);
return result;
}
// Check reported size
if (volumeSize != bmVolumeSize)
msgSizeMismach = true;
//Check that volume is fully present in input
if (volumeOffset + volumeSize > (UINT32)bios.size()) {
// Check that volume is fully present in input
if (volumeSize > (UINT32)bios.size() || volumeOffset + volumeSize > (UINT32)bios.size()) {
msg(tr("parseBios: one of volumes inside overlaps the end of data"), parent);
return ERR_INVALID_VOLUME;
}
// Check reported size against a size calculated using block map
if (volumeSize != bmVolumeSize)
msgSizeMismach = true;
// Check volume revision and alignment
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
UINT32 alignment;
@ -898,6 +919,10 @@ UINT8 FfsEngine::findNextVolume(const QByteArray & bios, UINT32 volumeOffset, UI
UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
{
// Check that there is space for the volume header and at least two block map entries.
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
return ERR_INVALID_VOLUME;
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
@ -918,14 +943,37 @@ UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UIN
volumeSize = volumeHeader->FvLength;
bmVolumeSize = calcVolumeSize;
if (volumeSize == 0)
return ERR_INVALID_VOLUME;
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check that there is space for the volume header
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
msg(tr("parseVolume: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
return ERR_INVALID_VOLUME;
}
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
// Check sanity of HeaderLength value
if (ALIGN8(volumeHeader->HeaderLength) > volume.size()) {
msg(tr("parseVolume: volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Check sanity of ExtHeaderOffset value
if (volumeHeader->ExtHeaderOffset > 0
&& (UINT32)volume.size() < ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER))) {
msg(tr("parseVolume: extended volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Calculate volume header size
UINT32 headerSize;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
@ -940,12 +988,10 @@ UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, co
// Check for volume structure to be known
bool volumeIsUnknown = true;
/*UINT8 volumeFfsVersion = 0;*/
// Check for FFS v2 volume
if (FFSv2Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))) {
volumeIsUnknown = false;
/*volumeFfsVersion = 2;*/
}
// Check attributes
@ -1139,6 +1185,8 @@ UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, co
UINT8 FfsEngine::getFileSize(const QByteArray & volume, const UINT32 fileOffset, UINT32 & fileSize)
{
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER))
return ERR_INVALID_VOLUME;
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)(volume.constData() + fileOffset);
fileSize = uint24ToUint32(fileHeader->Size);
return ERR_SUCCESS;
@ -1332,6 +1380,8 @@ UINT8 FfsEngine::parseFile(const QByteArray & file, QModelIndex & index, const U
UINT8 FfsEngine::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, UINT32 & sectionSize)
{
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_FILE;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
sectionSize = uint24ToUint32(sectionHeader->Size);
return ERR_SUCCESS;
@ -1350,6 +1400,9 @@ UINT8 FfsEngine::parseSections(const QByteArray & body, const QModelIndex & pare
result = getSectionSize(body, sectionOffset, sectionSize);
if (result)
return result;
// Exit from loop if no sections left
if (sectionSize == 0)
break;
// Parse section
QModelIndex sectionIndex;
@ -1531,6 +1584,7 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
bool msgInvalidCrc = false;
bool msgUnknownAuth = false;
bool msgSigned = false;
bool msgInvalidSignatureLength = false;
bool msgUnknownSignature = false;
bool msgUnknownUefiGuidSignature = false;
@ -1594,7 +1648,12 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
else if (QByteArray((const char*)&guidDefinedSectionHeader->SectionDefinitionGuid, sizeof(EFI_GUID)) == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
msgSigned = true;
const WIN_CERTIFICATE* certificateHeader = (const WIN_CERTIFICATE*)body.constData();
if (certificateHeader->CertificateType == WIN_CERT_TYPE_EFI_GUID) {
if ((UINT32)body.size() < sizeof(WIN_CERTIFICATE)) {
info += tr("\nSignature type: invalid, wrong length");
msgInvalidSignatureLength = true;
parseCurrentSection = false;
}
else if (certificateHeader->CertificateType == WIN_CERT_TYPE_EFI_GUID) {
info += tr("\nSignature type: UEFI");
const WIN_CERTIFICATE_UEFI_GUID* guidCertificateHeader = (const WIN_CERTIFICATE_UEFI_GUID*)certificateHeader;
if (QByteArray((const char*)&guidCertificateHeader->CertType, sizeof(EFI_GUID)) == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
@ -1619,10 +1678,17 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
msgUnknownSignature = true;
}
// Add additional to the header
header.append(body.left(certificateHeader->Length));
// Get new body
processed = body = body.mid(certificateHeader->Length);
if ((UINT32)body.size() < certificateHeader->Length) {
info += tr("\nSignature type: invalid, wrong length");
msgInvalidSignatureLength = true;
parseCurrentSection = false;
}
else {
// Add additional data to the header
header.append(body.left(certificateHeader->Length));
// Get new body
processed = body = body.mid(certificateHeader->Length);
}
}
// Unknown GUIDed section
else {
@ -1665,6 +1731,8 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
msg(tr("parseSection: signature may become invalid after any modification"), index);
if (msgUnknownUefiGuidSignature)
msg(tr("parseSection: GUID defined section with unknown signature subtype"), index);
if (msgInvalidSignatureLength)
msg(tr("parseSection: GUID defined section with invalid signature length"), index);
if (msgUnknownSignature)
msg(tr("parseSection: GUID defined section with unknown signature type"), index);
@ -1796,6 +1864,7 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
// Get PE info
bool msgInvalidDosSignature = false;
bool msgInvalidDosHeader = false;
bool msgInvalidPeSignature = false;
bool msgUnknownOptionalHeaderSignature = false;
@ -1806,7 +1875,11 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
}
else {
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
if ((UINT32)body.size() < dosHeader->e_lfanew + sizeof(EFI_IMAGE_PE_HEADER)) {
info += tr("\nDOS lfanew: %1h, invalid").hexarg2(dosHeader->e_lfanew, 8);
msgInvalidDosHeader = true;
}
else if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
info += tr("\nPE signature: %1h, invalid").hexarg2(peHeader->Signature, 8);
msgInvalidPeSignature = true;
}
@ -1853,6 +1926,9 @@ UINT8 FfsEngine::parseSection(const QByteArray & section, QModelIndex & index, c
if (msgInvalidDosSignature) {
msg("parseSection: PE32 image with invalid DOS signature", index);
}
if (msgInvalidDosHeader) {
msg("parseSection: PE32 image with invalid DOS header", index);
}
if (msgInvalidPeSignature) {
msg("parseSection: PE32 image with invalid PE signature", index);
}
@ -2845,16 +2921,40 @@ UINT8 FfsEngine::reconstructIntelImage(const QModelIndex& index, QByteArray& rec
return result;
reconstructed.append(descriptor);
// Check descriptor size
if ((UINT32)descriptor.size() < FLASH_DESCRIPTOR_SIZE) {
msg(tr("reconstructIntelImage: descriptor is smaller than minimum size of 1000h (4096) bytes"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor.constData() + sizeof(FLASH_DESCRIPTOR_HEADER));
// Check sanity of base values
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
msg(tr("reconstructIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
msg(tr("reconstructIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
msg(tr("reconstructIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8((const UINT8*)descriptor.constData(), descriptorMap->RegionBase);
QByteArray gbe;
UINT32 gbeBegin = calculateRegionOffset(regionSection->GbeBase);
UINT32 gbeEnd = gbeBegin + calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
QByteArray me;
UINT32 meBegin = calculateRegionOffset(regionSection->MeBase);
UINT32 meEnd = meBegin + calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
QByteArray bios;
UINT32 biosBegin = calculateRegionOffset(regionSection->BiosBase);
UINT32 biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
@ -2870,7 +2970,7 @@ UINT8 FfsEngine::reconstructIntelImage(const QModelIndex& index, QByteArray& rec
QByteArray pdr;
UINT32 pdrBegin = calculateRegionOffset(regionSection->PdrBase);
UINT32 pdrEnd = pdrBegin + calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
QByteArray ec;
UINT32 ecBegin = 0;
UINT32 ecEnd = 0;
@ -2890,7 +2990,7 @@ UINT8 FfsEngine::reconstructIntelImage(const QModelIndex& index, QByteArray& rec
msg(tr("reconstructIntelImage: unknown descriptor version with ReadClockFrequency %1h").hexarg(componentSection->FlashParameters.ReadClockFrequency));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
UINT32 offset = descriptor.size();
// Reconstruct other regions
@ -3107,6 +3207,12 @@ UINT8 FfsEngine::reconstructVolume(const QModelIndex & index, QByteArray & recon
QByteArray body = model->body(index);
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)header.data();
// Check sanity of HeaderLength
if (volumeHeader->HeaderLength > header.size()) {
msg(tr("reconstructVolume: invalid volume header length, reconstruction is not possible"), index);
return ERR_INVALID_VOLUME;
}
// Recalculate volume header checksum
volumeHeader->Checksum = 0;
volumeHeader->Checksum = calculateChecksum16((const UINT16*)volumeHeader, volumeHeader->HeaderLength);
@ -3170,8 +3276,8 @@ UINT8 FfsEngine::reconstructVolume(const QModelIndex & index, QByteArray & recon
// Calculate relative base address
UINT32 relbase = fileOffset + sectionOffset + model->header(image).size();
// Calculate offset of image relative to file base
UINT32 imagebase;
result = getBase(model->body(image), imagebase);
UINT32 imagebase = 0;
result = getBase(model->body(image), imagebase); // imagebase passed by reference
if (!result) {
// Calculate volume base
volumeBase = imagebase - relbase;
@ -3694,6 +3800,12 @@ UINT8 FfsEngine::reconstructSection(const QModelIndex& index, const UINT32 base,
if (guidDefinedHeader->Attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) {
// CRC32 section
if (QByteArray((const char*)&guidDefinedHeader->SectionDefinitionGuid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_CRC32) {
// Check header size
if ((UINT32)header.size() != sizeof(EFI_GUID_DEFINED_SECTION) + sizeof(UINT32)) {
msg(tr("reconstructSection: invalid CRC32 section size %1h (%2)")
.hexarg(header.size()).arg(header.size()), index);
return ERR_INVALID_SECTION;
}
// Calculate CRC32 of section data
UINT32 crc = crc32(0, (const UINT8*)compressed.constData(), compressed.size());
// Store new CRC32
@ -3831,6 +3943,10 @@ UINT8 FfsEngine::reconstruct(const QModelIndex &index, QByteArray& reconstructed
UINT8 FfsEngine::growVolume(QByteArray & header, const UINT32 size, UINT32 & newSize)
{
// Check sanity
if ((UINT32)header.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER))
return ERR_INVALID_VOLUME;
// Adjust new size to be representable by current FvBlockMap
EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)header.data();
EFI_FV_BLOCK_MAP_ENTRY* blockMap = (EFI_FV_BLOCK_MAP_ENTRY*)(header.data() + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
@ -4042,11 +4158,15 @@ UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
QByteArray file = executable;
// Populate DOS header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
return ERR_INVALID_FILE;
EFI_IMAGE_DOS_HEADER* dosHeader = (EFI_IMAGE_DOS_HEADER*)file.data();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
return ERR_UNKNOWN_IMAGE_TYPE;
EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(file.data() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
@ -4054,8 +4174,12 @@ UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
// Skip file header
offset += sizeof(EFI_IMAGE_FILE_HEADER);
// Check optional header magic
if ((UINT32)file.size() < offset + sizeof(UINT16))
return ERR_UNKNOWN_IMAGE_TYPE;
UINT16 magic = *(UINT16*)(file.data() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (EFI_IMAGE_OPTIONAL_HEADER32*)(file.data() + offset);
delta = base - optHeader->ImageBase;
if (!delta)
@ -4067,6 +4191,8 @@ UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
optHeader->ImageBase = base;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (EFI_IMAGE_OPTIONAL_HEADER64*)(file.data() + offset);
delta = base - optHeader->ImageBase;
if (!delta)
@ -4082,6 +4208,8 @@ UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
return ERR_INVALID_FILE;
EFI_IMAGE_TE_HEADER* teHeader = (EFI_IMAGE_TE_HEADER*)file.data();
delta = base - teHeader->ImageBase;
if (!delta)
@ -4121,7 +4249,10 @@ UINT8 FfsEngine::rebase(QByteArray &executable, const UINT32 base)
// Run this relocation record
while (Reloc < RelocEnd) {
UINT8* data = (UINT8*)(file.data() + RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF));
UINT32 RelocLocation = RelocBase->VirtualAddress - teFixup + (*Reloc & 0x0FFF);
if ((UINT32)file.size() < RelocLocation)
return ERR_BAD_RELOCATION_ENTRY;
UINT8* data = (UINT8*)(file.data() + RelocLocation);
switch ((*Reloc) >> 12) {
case EFI_IMAGE_REL_BASED_ABSOLUTE:
// Do nothing
@ -4197,11 +4328,15 @@ UINT8 FfsEngine::getEntryPoint(const QByteArray &file, UINT32& entryPoint)
return ERR_INVALID_FILE;
// Populate DOS header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
return ERR_INVALID_FILE;
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
return ERR_UNKNOWN_IMAGE_TYPE;
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
@ -4213,10 +4348,14 @@ UINT8 FfsEngine::getEntryPoint(const QByteArray &file, UINT32& entryPoint)
// Check optional header magic
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
entryPoint = optHeader->ImageBase + optHeader->AddressOfEntryPoint;
}
@ -4225,6 +4364,8 @@ UINT8 FfsEngine::getEntryPoint(const QByteArray &file, UINT32& entryPoint)
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
return ERR_INVALID_FILE;
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
UINT32 teFixup = teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
entryPoint = teHeader->ImageBase + teHeader->AddressOfEntryPoint - teFixup;
@ -4238,11 +4379,15 @@ UINT8 FfsEngine::getBase(const QByteArray& file, UINT32& base)
return ERR_INVALID_FILE;
// Populate DOS header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_DOS_HEADER))
return ERR_INVALID_FILE;
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)file.constData();
// Check signature
if (dosHeader->e_magic == EFI_IMAGE_DOS_SIGNATURE){
UINT32 offset = dosHeader->e_lfanew;
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_PE_HEADER))
return ERR_UNKNOWN_IMAGE_TYPE;
const EFI_IMAGE_PE_HEADER* peHeader = (const EFI_IMAGE_PE_HEADER*)(file.constData() + offset);
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE)
return ERR_UNKNOWN_IMAGE_TYPE;
@ -4254,10 +4399,14 @@ UINT8 FfsEngine::getBase(const QByteArray& file, UINT32& base)
// Check optional header magic
const UINT16 magic = *(const UINT16*)(file.constData() + offset);
if (magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER32))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
const EFI_IMAGE_OPTIONAL_HEADER32* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER32*)(file.constData() + offset);
base = optHeader->ImageBase;
}
else if (magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
if ((UINT32)file.size() < offset + sizeof(EFI_IMAGE_OPTIONAL_HEADER64))
return ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE;
const EFI_IMAGE_OPTIONAL_HEADER64* optHeader = (const EFI_IMAGE_OPTIONAL_HEADER64*)(file.constData() + offset);
base = optHeader->ImageBase;
}
@ -4266,6 +4415,8 @@ UINT8 FfsEngine::getBase(const QByteArray& file, UINT32& base)
}
else if (dosHeader->e_magic == EFI_IMAGE_TE_SIGNATURE){
// Populate TE header
if ((UINT32)file.size() < sizeof(EFI_IMAGE_TE_HEADER))
return ERR_INVALID_FILE;
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)file.constData();
//!TODO: add handling
base = teHeader->ImageBase;

View file

@ -17,7 +17,7 @@
UEFITool::UEFITool(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::UEFITool),
version(tr("0.21.4"))
version(tr("0.21.5"))
{
clipboard = QApplication::clipboard();