UEFITool/common/ffsparser.cpp

2855 lines
121 KiB
C++
Raw Normal View History

/* ffsparser.cpp
Copyright (c) 2016, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include "ffsparser.h"
#include <cmath>
#include <algorithm>
// Region info structure definition
struct REGION_INFO {
UINT32 offset;
UINT32 length;
UINT8 type;
QByteArray data;
friend bool operator< (const REGION_INFO & lhs, const REGION_INFO & rhs){ return lhs.offset < rhs.offset; }
};
FfsParser::FfsParser(TreeModel* treeModel)
: model(treeModel), capsuleOffsetFixup(0)
{
}
FfsParser::~FfsParser()
{
}
void FfsParser::msg(const QString & message, const QModelIndex & index)
{
messagesVector.push_back(std::pair<QString, QModelIndex>(message, index));
}
std::vector<std::pair<QString, QModelIndex> > FfsParser::getMessages() const
{
return messagesVector;
}
void FfsParser::clearMessages()
{
messagesVector.clear();
}
// Firmware image parsing functions
STATUS FfsParser::parse(const QByteArray & buffer)
{
QModelIndex root;
STATUS result = performFirstPass(buffer, root);
addOffsetsRecursive(root);
if (result)
return result;
if (lastVtf.isValid()) {
result = performSecondPass(root);
}
else {
msg(QObject::tr("parse: not a single Volume Top File is found, the image may be corrupted"));
}
return result;
}
STATUS FfsParser::performFirstPass(const QByteArray & buffer, QModelIndex & index)
{
// Reset capsule offset fixup value
capsuleOffsetFixup = 0;
// Check buffer size to be more than or equal to size of EFI_CAPSULE_HEADER
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
msg(QObject::tr("performFirstPass: image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(EFI_CAPSULE_HEADER)).arg(sizeof(EFI_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
UINT32 capsuleHeaderSize = 0;
// Check buffer for being normal EFI capsule header
if (buffer.startsWith(EFI_CAPSULE_GUID)
|| buffer.startsWith(INTEL_CAPSULE_GUID)
|| buffer.startsWith(LENOVO_CAPSULE_GUID)
|| buffer.startsWith(LENOVO2_CAPSULE_GUID)) {
// Get info
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
// Check sanity of HeaderSize and CapsuleImageSize values
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->CapsuleImageSize) {
msg(QObject::tr("performFirstPass: UEFI capsule header size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->CapsuleImageSize == 0 || capsuleHeader->CapsuleImageSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: UEFI capsule image size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->CapsuleImageSize).arg(capsuleHeader->CapsuleImageSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.mid(capsuleHeaderSize);
QString name = QObject::tr("UEFI capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleImageSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, name, QString(), info, header, body, true);
}
// Check buffer for being Toshiba capsule header
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
// Get info
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
// Check sanity of HeaderSize and FullSize values
if (capsuleHeader->HeaderSize == 0 || capsuleHeader->HeaderSize > (UINT32)buffer.size() || capsuleHeader->HeaderSize > capsuleHeader->FullSize) {
msg(QObject::tr("performFirstPass: Toshiba capsule header size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->FullSize == 0 || capsuleHeader->FullSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: Toshiba capsule full size of %1h (%2) bytes is invalid")
.hexarg(capsuleHeader->FullSize).arg(capsuleHeader->FullSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = QObject::tr("Toshiba capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->FullSize - capsuleHeaderSize).arg(capsuleHeader->FullSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, name, QString(), info, header, body, true);
}
// Check buffer for being extended Aptio capsule header
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
if ((UINT32)buffer.size() <= sizeof(APTIO_CAPSULE_HEADER)) {
msg(QObject::tr("performFirstPass: AMI capsule image file is smaller than minimum size of %1h (%2) bytes").hexarg(sizeof(APTIO_CAPSULE_HEADER)).arg(sizeof(APTIO_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
// Get info
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
// Check sanity of RomImageOffset and CapsuleImageSize values
if (capsuleHeader->RomImageOffset == 0 || capsuleHeader->RomImageOffset > (UINT32)buffer.size() || capsuleHeader->RomImageOffset > capsuleHeader->CapsuleHeader.CapsuleImageSize) {
msg(QObject::tr("performFirstPass: AMI capsule image offset of %1h (%2) bytes is invalid").hexarg(capsuleHeader->RomImageOffset).arg(capsuleHeader->RomImageOffset));
return ERR_INVALID_CAPSULE;
}
if (capsuleHeader->CapsuleHeader.CapsuleImageSize == 0 || capsuleHeader->CapsuleHeader.CapsuleImageSize > (UINT32)buffer.size()) {
msg(QObject::tr("performFirstPass: AMI capsule image size of %1h (%2) bytes is invalid").hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize));
return ERR_INVALID_CAPSULE;
}
capsuleHeaderSize = capsuleHeader->RomImageOffset;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.mid(capsuleHeaderSize);
QString name = QObject::tr("AMI Aptio capsule");
QString info = QObject::tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleHeader.CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->CapsuleHeader.Flags, 8);
// Set capsule offset fixup for correct volume allignment warnings
capsuleOffsetFixup = capsuleHeaderSize;
// Add tree item
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, name, QString(), info, header, body, true);
// Show message about possible Aptio signature break
if (signedCapsule) {
msg(QObject::tr("performFirstPass: Aptio capsule signature may become invalid after image modifications"), index);
}
}
// Skip capsule header to have flash chip image
QByteArray flashImage = buffer.mid(capsuleHeaderSize);
// Check for Intel flash descriptor presence
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
// Check descriptor signature
STATUS result;
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
// Parse as Intel image
QModelIndex imageIndex;
result = parseIntelImage(flashImage, capsuleHeaderSize, index, imageIndex);
if (result != ERR_INVALID_FLASH_DESCRIPTOR) {
if (!index.isValid())
index = imageIndex;
return result;
}
}
// Get info
QString name = QObject::tr("UEFI image");
QString info = QObject::tr("Full size: %1h (%2)").hexarg(flashImage.size()).arg(flashImage.size());
// Construct parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
pdata.offset = capsuleHeaderSize;
// Add tree item
QModelIndex biosIndex = model->addItem(Types::Image, Subtypes::UefiImage, name, QString(), info, QByteArray(), flashImage, TRUE, parsingDataToQByteArray(pdata), index);
// Parse the image
result = parseRawArea(flashImage, biosIndex);
if (!index.isValid())
index = biosIndex;
return result;
}
STATUS FfsParser::parseIntelImage(const QByteArray & intelImage, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (intelImage.isEmpty())
return EFI_INVALID_PARAMETER;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Store the beginning of descriptor as descriptor base address
const UINT8* descriptor = (const UINT8*)intelImage.constData();
// Check for buffer size to be greater or equal to descriptor region size
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
msg(QObject::tr("parseIntelImage: input file is smaller than minimum descriptor size of %1h (%2) bytes").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Parse descriptor map
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
// Check sanity of base values
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
msg(QObject::tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
msg(QObject::tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
msg(QObject::tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
// Check descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
UINT8 descriptorVersion = 0;
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Old descriptor
descriptorVersion = 1;
else if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_17MHZ) // Skylake+ descriptor
descriptorVersion = 2;
else {
msg(QObject::tr("parseIntelImage: unknown descriptor version with ReadClockFrequency %1h").hexarg(componentSection->FlashParameters.ReadClockFrequency));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Regions
std::vector<REGION_INFO> regions;
// ME region
REGION_INFO me;
me.type = Subtypes::MeRegion;
me.offset = 0;
me.length = 0;
if (regionSection->MeLimit) {
me.offset = calculateRegionOffset(regionSection->MeBase);
me.length = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
me.data = intelImage.mid(me.offset, me.length);
regions.push_back(me);
}
// BIOS region
REGION_INFO bios;
bios.type = Subtypes::BiosRegion;
bios.offset = 0;
bios.length = 0;
if (regionSection->BiosLimit) {
bios.offset = calculateRegionOffset(regionSection->BiosBase);
bios.length = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
// Check for Gigabyte specific descriptor map
if (bios.length == (UINT32)intelImage.size()) {
if (!me.offset) {
msg(QObject::tr("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Use ME region end as BIOS region offset
bios.offset = me.offset + me.length;
bios.length = (UINT32)intelImage.size() - bios.offset;
bios.data = intelImage.mid(bios.offset, bios.length);
}
// Normal descriptor map
else {
bios.data = intelImage.mid(bios.offset, bios.length);
}
regions.push_back(bios);
}
else {
msg(QObject::tr("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// GbE region
REGION_INFO gbe;
gbe.type = Subtypes::GbeRegion;
gbe.offset = 0;
gbe.length = 0;
if (regionSection->GbeLimit) {
gbe.offset = calculateRegionOffset(regionSection->GbeBase);
gbe.length = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
gbe.data = intelImage.mid(gbe.offset, gbe.length);
regions.push_back(gbe);
}
// PDR region
REGION_INFO pdr;
pdr.type = Subtypes::PdrRegion;
pdr.offset = 0;
pdr.length = 0;
if (regionSection->PdrLimit) {
pdr.offset = calculateRegionOffset(regionSection->PdrBase);
pdr.length = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
pdr.data = intelImage.mid(pdr.offset, pdr.length);
regions.push_back(pdr);
}
// Reserved1 region
REGION_INFO reserved1;
reserved1.type = Subtypes::Reserved1Region;
reserved1.offset = 0;
reserved1.length = 0;
if (regionSection->Reserved1Limit && regionSection->Reserved1Base != 0xFFFF && regionSection->Reserved1Limit != 0xFFFF) {
reserved1.offset = calculateRegionOffset(regionSection->Reserved1Base);
reserved1.length = calculateRegionSize(regionSection->Reserved1Base, regionSection->Reserved1Limit);
reserved1.data = intelImage.mid(reserved1.offset, reserved1.length);
regions.push_back(reserved1);
}
// Reserved2 region
REGION_INFO reserved2;
reserved2.type = Subtypes::Reserved2Region;
reserved2.offset = 0;
reserved2.length = 0;
if (regionSection->Reserved2Limit && regionSection->Reserved2Base != 0xFFFF && regionSection->Reserved2Limit != 0xFFFF) {
reserved2.offset = calculateRegionOffset(regionSection->Reserved2Base);
reserved2.length = calculateRegionSize(regionSection->Reserved2Base, regionSection->Reserved2Limit);
reserved2.data = intelImage.mid(reserved2.offset, reserved2.length);
regions.push_back(reserved2);
}
// Reserved3 region
REGION_INFO reserved3;
reserved3.type = Subtypes::Reserved3Region;
reserved3.offset = 0;
reserved3.length = 0;
// EC region
REGION_INFO ec;
ec.type = Subtypes::EcRegion;
ec.offset = 0;
ec.length = 0;
// Reserved4 region
REGION_INFO reserved4;
reserved3.type = Subtypes::Reserved4Region;
reserved4.offset = 0;
reserved4.length = 0;
// Check for EC and reserved region 4 only for v2 descriptor
if (descriptorVersion == 2) {
if (regionSection->Reserved3Limit) {
reserved3.offset = calculateRegionOffset(regionSection->Reserved3Base);
reserved3.length = calculateRegionSize(regionSection->Reserved3Base, regionSection->Reserved3Limit);
reserved3.data = intelImage.mid(reserved3.offset, reserved3.length);
regions.push_back(reserved3);
}
if (regionSection->EcLimit) {
ec.offset = calculateRegionOffset(regionSection->EcBase);
ec.length = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
ec.data = intelImage.mid(ec.offset, ec.length);
regions.push_back(ec);
}
if (regionSection->Reserved4Limit) {
reserved4.offset = calculateRegionOffset(regionSection->Reserved4Base);
reserved4.length = calculateRegionSize(regionSection->Reserved4Base, regionSection->Reserved4Limit);
reserved4.data = intelImage.mid(reserved4.offset, reserved4.length);
regions.push_back(reserved4);
}
}
// Sort regions in ascending order
qSort(regions);
// Check for intersections and paddings between regions
REGION_INFO region;
// Check intersection with the descriptor
if (regions.front().offset < FLASH_DESCRIPTOR_SIZE) {
msg(QObject::tr("parseIntelImage: %1 region has intersection with flash descriptor").arg(itemSubtypeToQString(Types::Region, regions.front().type)), index);
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Check for padding between descriptor and the first region
else if (regions.front().offset > FLASH_DESCRIPTOR_SIZE) {
region.offset = FLASH_DESCRIPTOR_SIZE;
region.length = regions.front().offset - FLASH_DESCRIPTOR_SIZE;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
regions.insert(regions.begin(), region);
}
// Check for intersections/paddings between regions
for (size_t i = 1; i < regions.size(); i++) {
UINT32 previousRegionEnd = regions[i-1].offset + regions[i-1].length;
// Check that current region is fully present in the image
if (regions[i].offset + regions[i].length > (UINT32)intelImage.size()) {
msg(QObject::tr("parseIntelImage: %1 region is located outside of opened image, if your system uses dual-chip storage, please append another part to the opened image")
.arg(itemSubtypeToQString(Types::Region, regions[i].type)), index);
return ERR_TRUNCATED_IMAGE;
}
// Check for intersection with previous region
if (regions[i].offset < previousRegionEnd) {
msg(QObject::tr("parseIntelImage: %1 region has intersection with %2 region")
.arg(itemSubtypeToQString(Types::Region, regions[i].type))
.arg(itemSubtypeToQString(Types::Region, regions[i-1].type)), index);
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Check for padding between current and previous regions
else if (regions[i].offset > previousRegionEnd) {
region.offset = previousRegionEnd;
region.length = regions[i].offset - previousRegionEnd;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
std::vector<REGION_INFO>::iterator iter = regions.begin();
std::advance(iter, i - 1);
regions.insert(iter, region);
}
}
// Check for padding after the last region
if (regions.back().offset + regions.back().length < (UINT32)intelImage.size()) {
region.offset = regions.back().offset + regions.back().length;
region.length = intelImage.size() - region.offset;
region.data = intelImage.mid(region.offset, region.length);
region.type = getPaddingType(region.data);
regions.push_back(region);
}
// Region map is consistent
// Intel image
QString name = QObject::tr("Intel image");
QString info = QObject::tr("Full size: %1h (%2)\nFlash chips: %3\nRegions: %4\nMasters: %5\nPCH straps: %6\nPROC straps: %7")
.hexarg(intelImage.size()).arg(intelImage.size())
.arg(descriptorMap->NumberOfFlashChips + 1) //
.arg(descriptorMap->NumberOfRegions + 1) // Zero-based numbers in storage
.arg(descriptorMap->NumberOfMasters + 1) //
.arg(descriptorMap->NumberOfPchStraps)
.arg(descriptorMap->NumberOfProcStraps);
// Construct parsing data
pdata.offset = parentOffset;
// Add Intel image tree item
index = model->addItem(Types::Image, Subtypes::IntelImage, name, QString(), info, QByteArray(), intelImage, TRUE, parsingDataToQByteArray(pdata), parent);
// Descriptor
// Get descriptor info
QByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
name = QObject::tr("Descriptor region");
info = QObject::tr("Full size: %1h (%2)").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE);
// Add offsets of actual regions
for (size_t i = 0; i < regions.size(); i++) {
if (regions[i].type != Subtypes::ZeroPadding && regions[i].type != Subtypes::OnePadding && regions[i].type != Subtypes::DataPadding)
info += QObject::tr("\n%1 region offset: %2h").arg(itemSubtypeToQString(Types::Region, regions[i].type)).hexarg(regions[i].offset + parentOffset);
}
// Region access settings
if (descriptorVersion == 1) {
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += QObject::tr("\nRegion access settings:");
info += QObject::tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h")
.hexarg2(masterSection->BiosRead, 2)
.hexarg2(masterSection->BiosWrite, 2)
.hexarg2(masterSection->MeRead, 2)
.hexarg2(masterSection->MeWrite, 2)
.hexarg2(masterSection->GbeRead, 2)
.hexarg2(masterSection->GbeWrite, 2);
// BIOS access table
info += QObject::tr("\nBIOS access table:");
info += QObject::tr("\n Read Write");
info += QObject::tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += QObject::tr("\nBIOS Yes Yes");
info += QObject::tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += QObject::tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += QObject::tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
}
else if (descriptorVersion == 2) {
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += QObject::tr("\nRegion access settings:");
info += QObject::tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h EC: %7h %8h")
.hexarg2(masterSection->BiosRead, 3)
.hexarg2(masterSection->BiosWrite, 3)
.hexarg2(masterSection->MeRead, 3)
.hexarg2(masterSection->MeWrite, 3)
.hexarg2(masterSection->GbeRead, 3)
.hexarg2(masterSection->GbeWrite, 3)
.hexarg2(masterSection->EcRead, 3)
.hexarg2(masterSection->EcWrite, 3);
// BIOS access table
info += QObject::tr("\nBIOS access table:");
info += QObject::tr("\n Read Write");
info += QObject::tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += QObject::tr("\nBIOS Yes Yes");
info += QObject::tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += QObject::tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += QObject::tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
info += QObject::tr("\nEC %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
}
// VSCC table
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
info += QObject::tr("\nFlash chips in VSCC table:");
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
for (int i = 0; i < vsscTableSize; i++) {
info += QObject::tr("\n%1%2%3h")
.hexarg2(vsccTableEntry->VendorId, 2)
.hexarg2(vsccTableEntry->DeviceId0, 2)
.hexarg2(vsccTableEntry->DeviceId1, 2);
vsccTableEntry++;
}
// Add descriptor tree item
QModelIndex regionIndex = model->addItem(Types::Region, Subtypes::DescriptorRegion, name, QString(), info, QByteArray(), body, TRUE, parsingDataToQByteArray(pdata), index);
// Parse regions
UINT8 result = ERR_SUCCESS;
UINT8 parseResult = ERR_SUCCESS;
for (size_t i = 0; i < regions.size(); i++) {
region = regions[i];
switch (region.type) {
case Subtypes::BiosRegion:
result = parseBiosRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::MeRegion:
result = parseMeRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::GbeRegion:
result = parseGbeRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::PdrRegion:
result = parsePdrRegion(region.data, region.offset, index, regionIndex);
break;
case Subtypes::Reserved1Region:
case Subtypes::Reserved2Region:
case Subtypes::Reserved3Region:
case Subtypes::EcRegion:
case Subtypes::Reserved4Region:
result = parseGeneralRegion(region.type, region.data, region.offset, index, regionIndex);
break;
case Subtypes::ZeroPadding:
case Subtypes::OnePadding:
case Subtypes::DataPadding: {
// Add padding between regions
QByteArray padding = intelImage.mid(region.offset, region.length);
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = parentOffset + region.offset;
// Add tree item
regionIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
result = ERR_SUCCESS;
} break;
default:
msg(QObject::tr("parseIntelImage: region of unknown type found"), index);
result = ERR_INVALID_FLASH_DESCRIPTOR;
}
// Store the first failed result as a final result
if (!parseResult && result)
parseResult = result;
}
return parseResult;
}
STATUS FfsParser::parseGbeRegion(const QByteArray & gbe, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (gbe.isEmpty())
return ERR_EMPTY_REGION;
if ((UINT32)gbe.size() < GBE_VERSION_OFFSET + sizeof(GBE_VERSION))
return ERR_INVALID_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("GbE region");
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
QString info = QObject::tr("Full size: %1h (%2)\nMAC: %3:%4:%5:%6:%7:%8\nVersion: %9.%10")
.hexarg(gbe.size()).arg(gbe.size())
.hexarg2(mac->vendor[0], 2)
.hexarg2(mac->vendor[1], 2)
.hexarg2(mac->vendor[2], 2)
.hexarg2(mac->device[0], 2)
.hexarg2(mac->device[1], 2)
.hexarg2(mac->device[2], 2)
.arg(version->major)
.arg(version->minor);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::GbeRegion, name, QString(), info, QByteArray(), gbe, TRUE, parsingDataToQByteArray(pdata), parent);
return ERR_SUCCESS;
}
STATUS FfsParser::parseMeRegion(const QByteArray & me, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (me.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("ME region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(me.size()).arg(me.size());
// Parse region
bool versionFound = true;
bool emptyRegion = false;
// Check for empty region
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
// Further parsing not needed
emptyRegion = true;
info += QObject::tr("\nState: empty");
}
else {
// Search for new signature
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
if (versionOffset < 0){ // New signature not found
// Search for old signature
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
if (versionOffset < 0){
info += QObject::tr("\nVersion: unknown");
versionFound = false;
}
}
// Check sanity
if ((UINT32)me.size() < (UINT32)versionOffset + sizeof(ME_VERSION))
return ERR_INVALID_REGION;
// Add version information
if (versionFound) {
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
info += QObject::tr("\nVersion: %1.%2.%3.%4")
.arg(version->major)
.arg(version->minor)
.arg(version->bugfix)
.arg(version->build);
}
}
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::MeRegion, name, QString(), info, QByteArray(), me, TRUE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (emptyRegion) {
msg(QObject::tr("parseMeRegion: ME region is empty"), index);
}
else if (!versionFound) {
msg(QObject::tr("parseMeRegion: ME version is unknown, it can be damaged"), index);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parsePdrRegion(const QByteArray & pdr, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (pdr.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("PDR region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(pdr.size()).arg(pdr.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::PdrRegion, name, QString(), info, QByteArray(), pdr, TRUE, parsingDataToQByteArray(pdata), parent);
// Parse PDR region as BIOS space
UINT8 result = parseRawArea(pdr, index);
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
return result;
return ERR_SUCCESS;
}
STATUS FfsParser::parseGeneralRegion(const UINT8 subtype, const QByteArray & region, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Check sanity
if (region.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("%1 region").arg(itemSubtypeToQString(Types::Region, subtype));
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(region.size()).arg(region.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, subtype, name, QString(), info, QByteArray(), region, TRUE, parsingDataToQByteArray(pdata), parent);
return ERR_SUCCESS;
}
STATUS FfsParser::parseBiosRegion(const QByteArray & bios, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (bios.isEmpty())
return ERR_EMPTY_REGION;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get info
QString name = QObject::tr("BIOS region");
QString info = QObject::tr("Full size: %1h (%2)").
hexarg(bios.size()).arg(bios.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
index = model->addItem(Types::Region, Subtypes::BiosRegion, name, QString(), info, QByteArray(), bios, TRUE, parsingDataToQByteArray(pdata), parent);
return parseRawArea(bios, index);
}
UINT8 FfsParser::getPaddingType(const QByteArray & padding)
{
if (padding.count('\x00') == padding.count())
return Subtypes::ZeroPadding;
if (padding.count('\xFF') == padding.count())
return Subtypes::OnePadding;
return Subtypes::DataPadding;
}
STATUS FfsParser::parseRawArea(const QByteArray & data, const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 headerSize = model->header(index).size();
UINT32 offset = pdata.offset + headerSize;
// Search for first volume
STATUS result;
UINT32 prevVolumeOffset;
result = findNextVolume(index, data, offset, 0, prevVolumeOffset);
if (result)
return result;
// First volume is not at the beginning of BIOS space
QString name;
QString info;
if (prevVolumeOffset > 0) {
// Get info
QByteArray padding = data.left(prevVolumeOffset);
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Search for and parse all volumes
UINT32 volumeOffset = prevVolumeOffset;
UINT32 prevVolumeSize = 0;
while (!result)
{
// Padding between volumes
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
UINT32 paddingOffset = prevVolumeOffset + prevVolumeSize;
UINT32 paddingSize = volumeOffset - paddingOffset;
QByteArray padding = data.mid(paddingOffset, paddingSize);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + paddingOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Get volume size
UINT32 volumeSize = 0;
UINT32 bmVolumeSize = 0;
result = getVolumeSize(data, volumeOffset, volumeSize, bmVolumeSize);
if (result) {
msg(QObject::tr("parseRawArea: getVolumeSize failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return result;
}
// Check that volume is fully present in input
if (volumeSize > (UINT32)data.size() || volumeOffset + volumeSize > (UINT32)data.size()) {
msg(QObject::tr("parseRawArea: one of volumes inside overlaps the end of data"), index);
return ERR_INVALID_VOLUME;
}
QByteArray volume = data.mid(volumeOffset, volumeSize);
if (volumeSize > (UINT32)volume.size()) {
// Mark the rest as padding and finish the parsing
QByteArray padding = data.right(volume.size());
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + volumeOffset;
// Add tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseRawArea: one of volumes inside overlaps the end of data"), paddingIndex);
// Update variables
prevVolumeOffset = volumeOffset;
prevVolumeSize = padding.size();
break;
}
// Parse current volume's header
QModelIndex volumeIndex;
result = parseVolumeHeader(volume, model->header(index).size() + volumeOffset, index, volumeIndex);
if (result)
msg(QObject::tr("parseRawArea: volume header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
else {
// Show messages
if (volumeSize != bmVolumeSize)
msg(QObject::tr("parseBiosBody: volume size stored in header %1h (%2) differs from calculated using block map %3h (%4)")
.hexarg(volumeSize).arg(volumeSize)
.hexarg(bmVolumeSize).arg(bmVolumeSize),
volumeIndex);
}
// Go to next volume
prevVolumeOffset = volumeOffset;
prevVolumeSize = volumeSize;
result = findNextVolume(index, data, offset, volumeOffset + prevVolumeSize, volumeOffset);
}
// Padding at the end of BIOS space
volumeOffset = prevVolumeOffset + prevVolumeSize;
if ((UINT32)data.size() > volumeOffset) {
QByteArray padding = data.mid(volumeOffset);
// Get info
name = QObject::tr("Padding");
info = QObject::tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Construct parsing data
pdata.offset = offset + headerSize + volumeOffset;
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), name, QString(), info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
}
// Parse bodies
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::Volume:
parseVolumeBody(current);
break;
case Types::Padding:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeHeader(const QByteArray & volume, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (volume.isEmpty())
return ERR_INVALID_PARAMETER;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Check that there is space for the volume header
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
msg(QObject::tr("parseVolumeHeader: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
return ERR_INVALID_VOLUME;
}
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
// Check sanity of HeaderLength value
if ((UINT32)ALIGN8(volumeHeader->HeaderLength) > (UINT32)volume.size()) {
msg(QObject::tr("parseVolumeHeader: volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Check sanity of ExtHeaderOffset value
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset
&& (UINT32)ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER)) > (UINT32)volume.size()) {
msg(QObject::tr("parseVolumeHeader: extended volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Calculate volume header size
UINT32 headerSize;
EFI_GUID extendedHeaderGuid = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }};
bool hasExtendedHeader = false;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
hasExtendedHeader = true;
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
extendedHeaderGuid = extendedHeader->FvName;
}
else
headerSize = volumeHeader->HeaderLength;
// Extended header end can be unaligned
headerSize = ALIGN8(headerSize);
// Check for volume structure to be known
bool isUnknown = true;
UINT8 ffsVersion = 0;
// Check for FFS v2 volume
QByteArray guid = QByteArray((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID));
if (std::find(FFSv2Volumes.begin(), FFSv2Volumes.end(), guid) != FFSv2Volumes.end()) {
isUnknown = false;
ffsVersion = 2;
}
// Check for FFS v3 volume
if (std::find(FFSv3Volumes.begin(), FFSv3Volumes.end(), guid) != FFSv3Volumes.end()) {
isUnknown = false;
ffsVersion = 3;
}
// Check volume revision and alignment
bool msgAlignmentBitsSet = false;
bool msgUnaligned = false;
bool msgUnknownRevision = false;
UINT32 alignment = 65536; // Default volume alignment is 64K
if (volumeHeader->Revision == 1) {
// Acquire alignment capability bit
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
if (!alignmentCap) {
if ((volumeHeader->Attributes & 0xFFFF0000))
msgAlignmentBitsSet = true;
}
// Do not check for volume alignment on revision 1 volumes
// No one gives a single crap about setting it correctly
/*else {
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2) alignment = 2;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4) alignment = 4;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8) alignment = 8;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16) alignment = 16;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32) alignment = 32;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64) alignment = 64;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_128) alignment = 128;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_256) alignment = 256;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_512) alignment = 512;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_1K) alignment = 1024;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_2K) alignment = 2048;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_4K) alignment = 4096;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_8K) alignment = 8192;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_16K) alignment = 16384;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_32K) alignment = 32768;
if (volumeHeader->Attributes & EFI_FVB_ALIGNMENT_64K) alignment = 65536;
}*/
}
else if (volumeHeader->Revision == 2) {
// Acquire alignment
alignment = (UINT32)pow(2.0, (int)(volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
// Check alignment
if (!isUnknown && !model->compressed(parent) && ((pdata.offset + parentOffset - capsuleOffsetFixup) % alignment))
msgUnaligned = true;
}
else
msgUnknownRevision = true;
// Check attributes
// Determine value of empty byte
UINT8 emptyByte = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';
// Check for AppleCRC32 and AppleFreeSpaceOffset in ZeroVector
bool hasAppleCrc32 = false;
bool hasAppleFSO = false;
UINT32 volumeSize = volume.size();
UINT32 appleCrc32 = *(UINT32*)(volume.constData() + 8);
UINT32 appleFSO = *(UINT32*)(volume.constData() + 12);
if (appleCrc32 != 0) {
// Calculate CRC32 of the volume body
UINT32 crc = crc32(0, (const UINT8*)(volume.constData() + volumeHeader->HeaderLength), volumeSize - volumeHeader->HeaderLength);
if (crc == appleCrc32) {
hasAppleCrc32 = true;
}
// Check if FreeSpaceOffset is non-zero
if (appleFSO != 0) {
hasAppleFSO = true;
}
}
// Check header checksum by recalculating it
bool msgInvalidChecksum = false;
QByteArray tempHeader((const char*)volumeHeader, volumeHeader->HeaderLength);
((EFI_FIRMWARE_VOLUME_HEADER*)tempHeader.data())->Checksum = 0;
UINT16 calculated = calculateChecksum16((const UINT16*)tempHeader.constData(), volumeHeader->HeaderLength);
if (volumeHeader->Checksum != calculated)
msgInvalidChecksum = true;
// Get info
QByteArray header = volume.left(headerSize);
QByteArray body = volume.mid(headerSize);
QString name = guidToQString(volumeHeader->FileSystemGuid);
QString info = QObject::tr("ZeroVector:\n%1 %2 %3 %4 %5 %6 %7 %8\n%9 %10 %11 %12 %13 %14 %15 %16\nFileSystem GUID: %17\nFull size: %18h (%19)\n"
"Header size: %20h (%21)\nBody size: %22h (%23)\nRevision: %24\nAttributes: %25h\nErase polarity: %26\nChecksum: %27h, %28")
.hexarg2(volumeHeader->ZeroVector[0], 2).hexarg2(volumeHeader->ZeroVector[1], 2).hexarg2(volumeHeader->ZeroVector[2], 2).hexarg2(volumeHeader->ZeroVector[3], 2)
.hexarg2(volumeHeader->ZeroVector[4], 2).hexarg2(volumeHeader->ZeroVector[5], 2).hexarg2(volumeHeader->ZeroVector[6], 2).hexarg2(volumeHeader->ZeroVector[7], 2)
.hexarg2(volumeHeader->ZeroVector[8], 2).hexarg2(volumeHeader->ZeroVector[9], 2).hexarg2(volumeHeader->ZeroVector[10], 2).hexarg2(volumeHeader->ZeroVector[11], 2)
.hexarg2(volumeHeader->ZeroVector[12], 2).hexarg2(volumeHeader->ZeroVector[13], 2).hexarg2(volumeHeader->ZeroVector[14], 2).hexarg2(volumeHeader->ZeroVector[15], 2)
.arg(guidToQString(volumeHeader->FileSystemGuid))
.hexarg(volumeSize).arg(volumeSize)
.hexarg(headerSize).arg(headerSize)
.hexarg(volumeSize - headerSize).arg(volumeSize - headerSize)
.arg(volumeHeader->Revision)
.hexarg2(volumeHeader->Attributes, 8)
.arg(emptyByte ? "1" : "0")
.hexarg2(volumeHeader->Checksum, 4)
.arg(msgInvalidChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculated, 4) : QObject::tr("valid"));
// Extended header present
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
info += QObject::tr("\nExtended header size: %1h (%2)\nVolume GUID: %3")
.hexarg(extendedHeader->ExtHeaderSize).arg(extendedHeader->ExtHeaderSize)
.arg(guidToQString(extendedHeader->FvName));
}
// Construct parsing data
pdata.offset += parentOffset;
pdata.emptyByte = emptyByte;
pdata.ffsVersion = ffsVersion;
pdata.volume.hasExtendedHeader = hasExtendedHeader ? TRUE : FALSE;
pdata.volume.extendedHeaderGuid = extendedHeaderGuid;
pdata.volume.alignment = alignment;
pdata.volume.revision = volumeHeader->Revision;
pdata.volume.hasAppleCrc32 = hasAppleCrc32;
pdata.volume.hasAppleFSO = hasAppleFSO;
pdata.volume.isWeakAligned = (volumeHeader->Revision > 1 && (volumeHeader->Attributes & EFI_FVB2_WEAK_ALIGNMENT));
// Add text
QString text;
if (hasAppleCrc32)
text += QObject::tr("AppleCRC32 ");
if (hasAppleFSO)
text += QObject::tr("AppleFSO ");
// Add tree item
UINT8 subtype = Subtypes::UnknownVolume;
if (!isUnknown) {
if (ffsVersion == 2)
subtype = Subtypes::Ffs2Volume;
else if (ffsVersion == 3)
subtype = Subtypes::Ffs3Volume;
}
index = model->addItem(Types::Volume, subtype, name, text, info, header, body, TRUE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (isUnknown)
msg(QObject::tr("parseVolumeHeader: unknown file system %1").arg(guidToQString(volumeHeader->FileSystemGuid)), index);
if (msgInvalidChecksum)
msg(QObject::tr("parseVolumeHeader: volume header checksum is invalid"), index);
if (msgAlignmentBitsSet)
msg(QObject::tr("parseVolumeHeader: alignment bits set on volume without alignment capability"), index);
if (msgUnaligned)
msg(QObject::tr("parseVolumeHeader: unaligned volume"), index);
if (msgUnknownRevision)
msg(QObject::tr("parseVolumeHeader: unknown volume revision %1").arg(volumeHeader->Revision), index);
return ERR_SUCCESS;
}
STATUS FfsParser::findNextVolume(const QModelIndex & index, const QByteArray & bios, const UINT32 parentOffset, const UINT32 volumeOffset, UINT32 & nextVolumeOffset)
{
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
return ERR_VOLUMES_NOT_FOUND;
// Check volume header to be sane
for (; nextIndex > 0; nextIndex = bios.indexOf(EFI_FV_SIGNATURE, nextIndex + 1)) {
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + nextIndex - EFI_FV_SIGNATURE_OFFSET);
if (volumeHeader->FvLength < sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY) || volumeHeader->FvLength >= 0xFFFFFFFFUL) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid FvLength %2h").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->FvLength, 16), index);
continue;
}
if (volumeHeader->Reserved != 0xFF && volumeHeader->Reserved != 0x00) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid Reserved byte value %2").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->Reserved, 2), index);
continue;
}
if (volumeHeader->Revision != 1 && volumeHeader->Revision != 2) {
msg(QObject::tr("findNextVolume: volume candidate at offset %1h skipped, has invalid Revision byte value %2").hexarg(parentOffset + (nextIndex - EFI_FV_SIGNATURE_OFFSET)).hexarg2(volumeHeader->Revision, 2), index);
continue;
}
// All checks passed, volume found
break;
}
// No additional volumes found
if (nextIndex < EFI_FV_SIGNATURE_OFFSET)
return ERR_VOLUMES_NOT_FOUND;
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
return ERR_SUCCESS;
}
STATUS FfsParser::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
{
// Check that there is space for the volume header and at least two block map entries.
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
return ERR_INVALID_VOLUME;
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
// Check volume signature
if (QByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
return ERR_INVALID_VOLUME;
// Calculate volume size using BlockMap
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
UINT32 calcVolumeSize = 0;
while (entry->NumBlocks != 0 && entry->Length != 0) {
if ((void*)entry > bios.constData() + bios.size())
return ERR_INVALID_VOLUME;
calcVolumeSize += entry->NumBlocks * entry->Length;
entry += 1;
}
volumeSize = volumeHeader->FvLength;
bmVolumeSize = calcVolumeSize;
if (volumeSize == 0)
return ERR_INVALID_VOLUME;
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeNonUefiData(const QByteArray & data, const UINT32 parentOffset, const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Modify it
pdata.offset += parentOffset;
// Search for VTF GUID backwards in received data
QByteArray padding = data;
QByteArray vtf;
INT32 vtfIndex = data.lastIndexOf(EFI_FFS_VOLUME_TOP_FILE_GUID);
if (vtfIndex >= 0) { // VTF candidate found inside non-UEFI data
padding = data.left(vtfIndex);
vtf = data.mid(vtfIndex);
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)vtf.constData();
if ((UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER) // VTF candidate is too small to be a real VTF in FFSv1/v2 volume
|| (pdata.ffsVersion == 3
&& (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
&& (UINT32)vtf.size() < sizeof(EFI_FFS_FILE_HEADER2))) { // VTF candidate is too small to be a real VTF in FFSv3 volume
vtfIndex = -1;
padding = data;
vtf.clear();
}
}
// Add non-UEFI data first
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Add padding tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
if (vtfIndex >= 0) {
// Get VTF file header
QByteArray header = vtf.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
header = vtf.left(sizeof(EFI_FFS_FILE_HEADER2));
}
//Parse VTF file header
QModelIndex fileIndex;
STATUS result = parseFileHeader(vtf, parentOffset + vtfIndex, index, fileIndex);
if (result) {
msg(QObject::tr("parseVolumeNonUefiData: VTF file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
// Add the rest as non-UEFI data too
pdata.offset += vtfIndex;
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(vtf.size()).arg(vtf.size());
// Add padding tree item
QModelIndex paddingIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), vtf, TRUE, parsingDataToQByteArray(pdata), index);
msg(QObject::tr("parseVolumeNonUefiData: non-UEFI data found in volume's free space"), paddingIndex);
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVolumeBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get volume header size and body
QByteArray volumeBody = model->body(index);
UINT32 volumeHeaderSize = model->header(index).size();
// Get parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT32 offset = pdata.offset;
if (pdata.ffsVersion != 2 && pdata.ffsVersion != 3) // Don't parse unknown volumes
return ERR_SUCCESS;
// Search for and parse all files
UINT32 volumeBodySize = volumeBody.size();
UINT32 fileOffset = 0;
while (fileOffset < volumeBodySize) {
UINT32 fileSize = getFileSize(volumeBody, fileOffset, pdata.ffsVersion);
// Check file size
if (fileSize < sizeof(EFI_FFS_FILE_HEADER) || fileSize > volumeBodySize - fileOffset) {
// Check that we are at the empty space
QByteArray header = volumeBody.mid(fileOffset, sizeof(EFI_FFS_FILE_HEADER));
if (header.count(pdata.emptyByte) == header.size()) { //Empty space
// Check free space to be actually free
QByteArray freeSpace = volumeBody.mid(fileOffset);
if (freeSpace.count(pdata.emptyByte) != freeSpace.count()) {
// Search for the first non-empty byte
UINT32 i;
UINT32 size = freeSpace.size();
const UINT8* current = (UINT8*)freeSpace.constData();
for (i = 0; i < size; i++) {
if (*current++ != pdata.emptyByte)
break;
}
// Align found index to file alignment
// It must be possible because minimum 16 bytes of empty were found before
if (i != ALIGN8(i))
i = ALIGN8(i) - 8;
// Construct parsing data
pdata.offset = offset + volumeHeaderSize + fileOffset;
// Add all bytes before as free space
if (i > 0) {
QByteArray free = freeSpace.left(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
// Add free space item
model->addItem(Types::FreeSpace, 0, QObject::tr("Volume free space"), "", info, QByteArray(), free, FALSE, parsingDataToQByteArray(pdata), index);
}
// Parse non-UEFI data
parseVolumeNonUefiData(freeSpace.mid(i), volumeHeaderSize + fileOffset + i, index);
}
else {
// Construct parsing data
pdata.offset = offset + volumeHeaderSize + fileOffset;
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(freeSpace.size()).arg(freeSpace.size());
// Add free space item
model->addItem(Types::FreeSpace, 0, QObject::tr("Volume free space"), "", info, QByteArray(), freeSpace, FALSE, parsingDataToQByteArray(pdata), index);
}
break; // Exit from parsing loop
}
else { //File space
// Parse non-UEFI data
parseVolumeNonUefiData(volumeBody.mid(fileOffset), volumeHeaderSize + fileOffset, index);
break; // Exit from parsing loop
}
}
// Get file header
QByteArray file = volumeBody.mid(fileOffset, fileSize);
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
}
//Parse current file's header
QModelIndex fileIndex;
STATUS result = parseFileHeader(file, volumeHeaderSize + fileOffset, index, fileIndex);
if (result)
msg(QObject::tr("parseVolumeBody: file header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
// Move to next file
fileOffset += fileSize;
fileOffset = ALIGN8(fileOffset);
}
// Check for duplicate GUIDs
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
// Skip non-file entries and pad files
if (model->type(current) != Types::File || model->subtype(current) == EFI_FV_FILETYPE_PAD)
continue;
QByteArray currentGuid = model->header(current).left(sizeof(EFI_GUID));
// Check files after current for having an equal GUID
for (int j = i + 1; j < model->rowCount(index); j++) {
QModelIndex another = index.child(j, 0);
// Skip non-file entries
if (model->type(another) != Types::File)
continue;
// Check GUIDs for being equal
QByteArray anotherGuid = model->header(another).left(sizeof(EFI_GUID));
if (currentGuid == anotherGuid) {
msg(QObject::tr("parseVolumeBody: file with duplicate GUID %1").arg(guidToQString(*(const EFI_GUID*)anotherGuid.constData())), another);
}
}
}
//Parse bodies
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::File:
parseFileBody(current);
break;
case Types::Padding:
case Types::FreeSpace:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
UINT32 FfsParser::getFileSize(const QByteArray & volume, const UINT32 fileOffset, const UINT8 ffsVersion)
{
if (ffsVersion == 2) {
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER))
return 0;
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)(volume.constData() + fileOffset);
return uint24ToUint32(fileHeader->Size);
}
else if (ffsVersion == 3) {
if ((UINT32)volume.size() < fileOffset + sizeof(EFI_FFS_FILE_HEADER2))
return 0;
const EFI_FFS_FILE_HEADER2* fileHeader = (const EFI_FFS_FILE_HEADER2*)(volume.constData() + fileOffset);
if (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)
return fileHeader->ExtendedSize;
else
return uint24ToUint32(fileHeader->Size);
}
else
return 0;
}
STATUS FfsParser::parseFileHeader(const QByteArray & file, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index)
{
// Sanity check
if (file.isEmpty())
return ERR_INVALID_PARAMETER;
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER))
return ERR_INVALID_FILE;
// Get parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Get file header
QByteArray header = file.left(sizeof(EFI_FFS_FILE_HEADER));
const EFI_FFS_FILE_HEADER* fileHeader = (const EFI_FFS_FILE_HEADER*)header.constData();
if (pdata.ffsVersion == 3 && (fileHeader->Attributes & FFS_ATTRIB_LARGE_FILE)) {
if ((UINT32)file.size() < sizeof(EFI_FFS_FILE_HEADER2))
return ERR_INVALID_FILE;
header = file.left(sizeof(EFI_FFS_FILE_HEADER2));
}
// Check file alignment
bool msgUnalignedFile = false;
UINT8 alignmentPower = ffsAlignmentTable[(fileHeader->Attributes & FFS_ATTRIB_DATA_ALIGNMENT) >> 3];
UINT32 alignment = (UINT32)pow(2.0, alignmentPower);
if ((parentOffset + header.size()) % alignment)
msgUnalignedFile = true;
// Check file alignment agains volume alignment
bool msgFileAlignmentIsGreaterThanVolumes = false;
if (!pdata.volume.isWeakAligned && pdata.volume.alignment < alignment)
msgFileAlignmentIsGreaterThanVolumes = true;
// Check header checksum
QByteArray tempHeader = header;
EFI_FFS_FILE_HEADER* tempFileHeader = (EFI_FFS_FILE_HEADER*)(tempHeader.data());
tempFileHeader->IntegrityCheck.Checksum.Header = 0;
tempFileHeader->IntegrityCheck.Checksum.File = 0;
UINT8 calculatedHeader = calculateChecksum8((const UINT8*)tempFileHeader, header.size() - 1);
bool msgInvalidHeaderChecksum = false;
if (fileHeader->IntegrityCheck.Checksum.Header != calculatedHeader)
msgInvalidHeaderChecksum = true;
// Check data checksum
// Data checksum must be calculated
bool msgInvalidDataChecksum = false;
UINT8 calculatedData = 0;
if (fileHeader->Attributes & FFS_ATTRIB_CHECKSUM) {
UINT32 bufferSize = file.size() - header.size();
// Exclude file tail from data checksum calculation
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
bufferSize -= sizeof(UINT16);
calculatedData = calculateChecksum8((const UINT8*)(file.constData() + header.size()), bufferSize);
if (fileHeader->IntegrityCheck.Checksum.File != calculatedData)
msgInvalidDataChecksum = true;
}
// Data checksum must be one of predefined values
else if (pdata.volume.revision == 1 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM) {
calculatedData = FFS_FIXED_CHECKSUM;
msgInvalidDataChecksum = true;
}
else if (pdata.volume.revision == 2 && fileHeader->IntegrityCheck.Checksum.File != FFS_FIXED_CHECKSUM2) {
calculatedData = FFS_FIXED_CHECKSUM2;
msgInvalidDataChecksum = true;
}
// Check file type
bool msgUnknownType = false;
if (fileHeader->Type > EFI_FV_FILETYPE_SMM_CORE && fileHeader->Type != EFI_FV_FILETYPE_PAD) {
msgUnknownType = true;
};
// Get file body
QByteArray body = file.mid(header.size());
// Check for file tail presence
UINT16 tail = 0;
bool msgInvalidTailValue = false;
bool hasTail = false;
if (pdata.volume.revision == 1 && (fileHeader->Attributes & FFS_ATTRIB_TAIL_PRESENT))
{
hasTail = true;
//Check file tail;
tail = *(UINT16*)body.right(sizeof(UINT16)).constData();
if (fileHeader->IntegrityCheck.TailReference != (UINT16)~tail)
msgInvalidTailValue = true;
// Remove tail from file body
body = body.left(body.size() - sizeof(UINT16));
}
// Get info
QString name;
QString info;
if (fileHeader->Type != EFI_FV_FILETYPE_PAD)
name = guidToQString(fileHeader->Name);
else
name = QObject::tr("Pad-file");
info = QObject::tr("File GUID: %1\nType: %2h\nAttributes: %3h\nFull size: %4h (%5)\nHeader size: %6h (%7)\nBody size: %8h (%9)\nState: %10h\nHeader checksum: %11h, %12\nData checksum: %13h, %14")
.arg(guidToQString(fileHeader->Name))
.hexarg2(fileHeader->Type, 2)
.hexarg2(fileHeader->Attributes, 2)
.hexarg(header.size() + body.size()).arg(header.size() + body.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg2(fileHeader->State, 2)
.hexarg2(fileHeader->IntegrityCheck.Checksum.Header, 2)
.arg(msgInvalidHeaderChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculatedHeader, 2) : QObject::tr("valid"))
.hexarg2(fileHeader->IntegrityCheck.Checksum.File, 2)
.arg(msgInvalidDataChecksum ? QObject::tr("invalid, should be %1h").hexarg2(calculatedData, 2) : QObject::tr("valid"));
// Check if the file is a Volume Top File
QString text;
bool isVtf = false;
if (EFI_FFS_VOLUME_TOP_FILE_GUID == header.left(sizeof(EFI_GUID))) {
// Mark it as the last VTF
// This information will later be used to determine memory addresses of uncompressed image elements
// Because the last byte of the last VFT is mapped to 0xFFFFFFFF physical memory address
isVtf = true;
text = QObject::tr("Volume Top File");
}
// Construct parsing data
bool fixed = fileHeader->Attributes & FFS_ATTRIB_FIXED;
pdata.offset += parentOffset;
pdata.file.hasTail = hasTail ? TRUE : FALSE;
pdata.file.tail = tail;
// Add tree item
index = model->addItem(Types::File, fileHeader->Type, name, text, info, header, body, fixed, parsingDataToQByteArray(pdata), parent);
// Overwrite lastVtf, if needed
if (isVtf) {
lastVtf = index;
}
// Show messages
if (msgUnalignedFile)
msg(QObject::tr("parseFileHeader: unaligned file"), index);
if (msgFileAlignmentIsGreaterThanVolumes)
msg(QObject::tr("parseFileHeader: file alignment %1h is greater than parent volume alignment %2h").hexarg(alignment).hexarg(pdata.volume.alignment), index);
if (msgInvalidHeaderChecksum)
msg(QObject::tr("parseFileHeader: invalid header checksum"), index);
if (msgInvalidDataChecksum)
msg(QObject::tr("parseFileHeader: invalid data checksum"), index);
if (msgInvalidTailValue)
msg(QObject::tr("parseFileHeader: invalid tail value"), index);
if (msgUnknownType)
msg(QObject::tr("parseFileHeader: unknown file type %1h").hexarg2(fileHeader->Type, 2), index);
return ERR_SUCCESS;
}
UINT32 FfsParser::getSectionSize(const QByteArray & file, const UINT32 sectionOffset, const UINT8 ffsVersion)
{
if (ffsVersion == 2) {
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER))
return 0;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(file.constData() + sectionOffset);
return uint24ToUint32(sectionHeader->Size);
}
else if (ffsVersion == 3) {
if ((UINT32)file.size() < sectionOffset + sizeof(EFI_COMMON_SECTION_HEADER2))
return 0;
const EFI_COMMON_SECTION_HEADER2* sectionHeader = (const EFI_COMMON_SECTION_HEADER2*)(file.constData() + sectionOffset);
UINT32 size = uint24ToUint32(sectionHeader->Size);
if (size == EFI_SECTION2_IS_USED)
return sectionHeader->ExtendedSize;
else
return size;
}
else
return 0;
}
STATUS FfsParser::parseFileBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Do not parse non-file bodies
if (model->type(index) != Types::File)
return ERR_SUCCESS;
// Parse pad-file body
if (model->subtype(index) == EFI_FV_FILETYPE_PAD)
return parsePadFileBody(index);
// Parse raw files as raw areas
if (model->subtype(index) == EFI_FV_FILETYPE_RAW || model->subtype(index) == EFI_FV_FILETYPE_ALL)
return parseRawArea(model->body(index), index);
// Parse sections
return parseSections(model->body(index), index);
}
STATUS FfsParser::parsePadFileBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Check if all bytes of the file are empty
QByteArray body = model->body(index);
if (body.size() == body.count(pdata.emptyByte))
return ERR_SUCCESS;
// Search for the first non-empty byte
UINT32 i;
UINT32 size = body.size();
const UINT8* current = (const UINT8*)body.constData();
for (i = 0; i < size; i++) {
if (*current++ != pdata.emptyByte)
break;
}
// Add all bytes before as free space...
if (i >= 8) {
// Align free space to 8 bytes boundary
if (i != ALIGN8(i))
i = ALIGN8(i) - 8;
QByteArray free = body.left(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(free.size()).arg(free.size());
// Constuct parsing data
pdata.offset += model->header(index).size();
// Add tree item
model->addItem(Types::FreeSpace, 0, QObject::tr("Free space"), QString(), info, QByteArray(), free, FALSE, parsingDataToQByteArray(pdata), index);
}
else
i = 0;
// ... and all bytes after as a padding
QByteArray padding = body.mid(i);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Constuct parsing data
pdata.offset += i;
// Add tree item
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
// Show message
msg(QObject::tr("parsePadFileBody: non-UEFI data found in pad-file"), dataIndex);
// Rename the file
model->setName(index, QObject::tr("Non-empty pad-file"));
return ERR_SUCCESS;
}
STATUS FfsParser::parseSections(const QByteArray & sections, const QModelIndex & index, const bool preparse)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Search for and parse all sections
UINT32 bodySize = sections.size();
UINT32 headerSize = model->header(index).size();
UINT32 sectionOffset = 0;
STATUS result = ERR_SUCCESS;
while (sectionOffset < bodySize) {
// Get section size
UINT32 sectionSize = getSectionSize(sections, sectionOffset, pdata.ffsVersion);
// Check section size
if (sectionSize < sizeof(EFI_COMMON_SECTION_HEADER) || sectionSize > (bodySize - sectionOffset)) {
// Add padding to fill the rest of sections
QByteArray padding = sections.mid(sectionOffset);
// Get info
QString info = QObject::tr("Full size: %1h (%2)").hexarg(padding.size()).arg(padding.size());
// Constuct parsing data
pdata.offset += headerSize + sectionOffset;
// Final parsing
if (!preparse) {
// Add tree item
QModelIndex dataIndex = model->addItem(Types::Padding, Subtypes::DataPadding, QObject::tr("Non-UEFI data"), "", info, QByteArray(), padding, TRUE, parsingDataToQByteArray(pdata), index);
// Show message
msg(QObject::tr("parseSections: non-UEFI data found in sections area"), dataIndex);
}
// Preparsing
else {
return ERR_INVALID_SECTION;
}
break; // Exit from parsing loop
}
// Parse section header
QModelIndex sectionIndex;
result = parseSectionHeader(sections.mid(sectionOffset, sectionSize), headerSize + sectionOffset, index, sectionIndex, preparse);
if (result) {
if (!preparse)
msg(QObject::tr("parseSections: section header parsing failed with error \"%1\"").arg(errorCodeToQString(result)), index);
else
return ERR_INVALID_SECTION;
}
// Move to next section
sectionOffset += sectionSize;
sectionOffset = ALIGN4(sectionOffset);
}
//Parse bodies, will be skipped on preparse phase
for (int i = 0; i < model->rowCount(index); i++) {
QModelIndex current = index.child(i, 0);
switch (model->type(current)) {
case Types::Section:
parseSectionBody(current);
break;
case Types::Padding:
// No parsing required
break;
default:
return ERR_UNKNOWN_ITEM_TYPE;
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
switch (sectionHeader->Type) {
// Special
case EFI_SECTION_COMPRESSION: return parseCompressedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseFreeformGuidedSectionHeader(section, parentOffset, parent, index, preparse);
case EFI_SECTION_VERSION: return parseVersionSectionHeader(section, parentOffset, parent, index, preparse);
case SCT_SECTION_POSTCODE:
case INSYDE_SECTION_POSTCODE: return parsePostcodeSectionHeader(section, parentOffset, parent, index, preparse);
// Common
case EFI_SECTION_DISPOSABLE:
case EFI_SECTION_DXE_DEPEX:
case EFI_SECTION_PEI_DEPEX:
case EFI_SECTION_SMM_DEPEX:
case EFI_SECTION_PE32:
case EFI_SECTION_PIC:
case EFI_SECTION_TE:
case EFI_SECTION_COMPATIBILITY16:
case EFI_SECTION_USER_INTERFACE:
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE:
case EFI_SECTION_RAW: return parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
// Unknown
default:
STATUS result = parseCommonSectionHeader(section, parentOffset, parent, index, preparse);
msg(QObject::tr("parseSectionHeader: section with unknown type %1h").hexarg2(sectionHeader->Type, 2), index);
return result;
}
}
STATUS FfsParser::parseCommonSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
UINT32 headerSize = sizeof(EFI_COMMON_SECTION_HEADER);
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED)
headerSize = sizeof(EFI_COMMON_SECTION_HEADER2);
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)")
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(headerSize).arg(headerSize)
.hexarg(body.size()).arg(body.size());
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseCompressedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_COMPRESSION_SECTION* compressedSectionHeader = (const EFI_COMPRESSION_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_COMPRESSION_SECTION);
UINT8 compressionType = compressedSectionHeader->CompressionType;
UINT32 uncompressedLength = compressedSectionHeader->UncompressedLength;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_COMPRESSION_SECTION2))
return ERR_INVALID_SECTION;
const EFI_COMPRESSION_SECTION2* compressedSectionHeader2 = (const EFI_COMPRESSION_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_COMPRESSION_SECTION2);
compressionType = compressedSectionHeader2->CompressionType;
uncompressedLength = compressedSectionHeader->UncompressedLength;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nCompression type: %8h\nDecompressed size: %9h (%10)")
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(headerSize).arg(headerSize)
.hexarg(body.size()).arg(body.size())
.hexarg2(compressionType, 2)
.hexarg(uncompressedLength).arg(uncompressedLength);
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.compressed.compressionType = compressionType;
pdata.section.compressed.uncompressedSize = uncompressedLength;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
2015-11-02 15:48:00 -05:00
const EFI_GUID_DEFINED_SECTION* guidDefinedSectionHeader = (const EFI_GUID_DEFINED_SECTION*)sectionHeader;
EFI_GUID guid = guidDefinedSectionHeader->SectionDefinitionGuid;
UINT16 dataOffset = guidDefinedSectionHeader->DataOffset;
UINT16 attributes = guidDefinedSectionHeader->Attributes;
UINT32 nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION);
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_GUID_DEFINED_SECTION2))
return ERR_INVALID_SECTION;
const EFI_GUID_DEFINED_SECTION2* guidDefinedSectionHeader2 = (const EFI_GUID_DEFINED_SECTION2*)sectionHeader;
guid = guidDefinedSectionHeader2->SectionDefinitionGuid;
dataOffset = guidDefinedSectionHeader2->DataOffset;
attributes = guidDefinedSectionHeader2->Attributes;
nextHeaderOffset = sizeof(EFI_GUID_DEFINED_SECTION2);
}
// Check for special GUIDed sections
QByteArray additionalInfo;
QByteArray baGuid((const char*)&guid, sizeof(EFI_GUID));
bool msgSignedSectionFound = false;
bool msgNoAuthStatusAttribute = false;
bool msgNoProcessingRequiredAttributeCompressed = false;
bool msgNoProcessingRequiredAttributeSigned = false;
bool msgInvalidCrc = false;
bool msgUnknownCertType = false;
bool msgUnknownCertSubtype = false;
if (baGuid == EFI_GUIDED_SECTION_CRC32) {
if ((attributes & EFI_GUIDED_SECTION_AUTH_STATUS_VALID) == 0) { // Check that AuthStatusValid attribute is set on compressed GUIDed sections
msgNoAuthStatusAttribute = true;
}
if ((UINT32)section.size() < nextHeaderOffset + sizeof(UINT32))
return ERR_INVALID_SECTION;
UINT32 crc = *(UINT32*)(section.constData() + nextHeaderOffset);
additionalInfo += QObject::tr("\nChecksum type: CRC32");
// Calculate CRC32 of section data
UINT32 calculated = crc32(0, (const UINT8*)section.constData() + dataOffset, section.size() - dataOffset);
if (crc == calculated) {
additionalInfo += QObject::tr("\nChecksum: %1h, valid").hexarg2(crc, 8);
}
else {
additionalInfo += QObject::tr("\nChecksum: %1h, invalid, should be %2h").hexarg2(crc, 8).hexarg2(calculated, 8);
msgInvalidCrc = true;
}
// No need to change dataOffset here
}
else if (baGuid == EFI_GUIDED_SECTION_LZMA || baGuid == EFI_GUIDED_SECTION_TIANO) {
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on compressed GUIDed sections
msgNoProcessingRequiredAttributeCompressed = true;
}
// No need to change dataOffset here
}
else if (baGuid == EFI_FIRMWARE_CONTENTS_SIGNED_GUID) {
if ((attributes & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) == 0) { // Check that ProcessingRequired attribute is set on signed GUIDed sections
msgNoProcessingRequiredAttributeSigned = true;
}
// Get certificate type and length
if ((UINT32)section.size() < nextHeaderOffset + sizeof(WIN_CERTIFICATE))
return ERR_INVALID_SECTION;
const WIN_CERTIFICATE* winCertificate = (const WIN_CERTIFICATE*)(section.constData() + nextHeaderOffset);
UINT32 certLength = winCertificate->Length;
UINT16 certType = winCertificate->CertificateType;
// Adjust dataOffset
dataOffset += certLength;
// Check section size once again
if ((UINT32)section.size() < dataOffset)
return ERR_INVALID_SECTION;
// Check certificate type
if (certType == WIN_CERT_TYPE_EFI_GUID) {
additionalInfo += QObject::tr("\nCertificate type: UEFI");
// Get certificate GUID
const WIN_CERTIFICATE_UEFI_GUID* winCertificateUefiGuid = (const WIN_CERTIFICATE_UEFI_GUID*)(section.constData() + nextHeaderOffset);
QByteArray certTypeGuid((const char*)&winCertificateUefiGuid->CertType, sizeof(EFI_GUID));
if (certTypeGuid == EFI_CERT_TYPE_RSA2048_SHA256_GUID) {
additionalInfo += QObject::tr("\nCertificate subtype: RSA2048/SHA256");
}
else {
additionalInfo += QObject::tr("\nCertificate subtype: unknown, GUID %1").arg(guidToQString(winCertificateUefiGuid->CertType));
msgUnknownCertSubtype = true;
}
}
else {
additionalInfo += QObject::tr("\nCertificate type: unknown (%1h)").hexarg2(certType, 4);
msgUnknownCertType = true;
}
msgSignedSectionFound = true;
}
QByteArray header = section.left(dataOffset);
QByteArray body = section.mid(dataOffset);
// Get info
QString name = guidToQString(guid);
QString info = QObject::tr("Section GUID: %1\nType: %2h\nFull size: %3h (%4)\nHeader size: %5h (%6)\nBody size: %7h (%8)\nData offset: %9h\nAttributes: %10h")
.arg(name)
.hexarg2(sectionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg(dataOffset)
.hexarg2(attributes, 4);
// Append additional info
info.append(additionalInfo);
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.guidDefined.guid = guid;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
// Show messages
if (msgSignedSectionFound)
msg(QObject::tr("parseGuidedSectionHeader: section signature may become invalid after any modification"), index);
if (msgNoAuthStatusAttribute)
msg(QObject::tr("parseGuidedSectionHeader: CRC32 GUIDed section without AuthStatusValid attribute"), index);
if (msgNoProcessingRequiredAttributeCompressed)
msg(QObject::tr("parseGuidedSectionHeader: compressed GUIDed section without ProcessingRequired attribute"), index);
if (msgNoProcessingRequiredAttributeSigned)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section without ProcessingRequired attribute"), index);
if (msgInvalidCrc)
msg(QObject::tr("parseGuidedSectionHeader: GUID defined section with invalid CRC32"), index);
if (msgUnknownCertType)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section with unknown type"), index);
if (msgUnknownCertSubtype)
msg(QObject::tr("parseGuidedSectionHeader: signed GUIDed section with unknown subtype"), index);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseFreeformGuidedSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_FREEFORM_SUBTYPE_GUID_SECTION* fsgHeader = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION);
EFI_GUID guid = fsgHeader->SubTypeGuid;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2))
return ERR_INVALID_SECTION;
const EFI_FREEFORM_SUBTYPE_GUID_SECTION2* fsgHeader2 = (const EFI_FREEFORM_SUBTYPE_GUID_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_FREEFORM_SUBTYPE_GUID_SECTION2);
guid = fsgHeader2->SubTypeGuid;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nSubtype GUID: %8")
.hexarg2(fsgHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.arg(guidToQString(guid));
// Construct parsing data
pdata.offset += parentOffset;
pdata.section.freeformSubtypeGuid.guid = guid;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
// Rename section
model->setName(index, guidToQString(guid));
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseVersionSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const EFI_VERSION_SECTION* versionHeader = (const EFI_VERSION_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(EFI_VERSION_SECTION);
UINT16 buildNumber = versionHeader->BuildNumber;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(EFI_VERSION_SECTION2))
return ERR_INVALID_SECTION;
const EFI_VERSION_SECTION2* versionHeader2 = (const EFI_VERSION_SECTION2*)sectionHeader;
headerSize = sizeof(EFI_VERSION_SECTION2);
buildNumber = versionHeader2->BuildNumber;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nBuild number: %8")
.hexarg2(versionHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.arg(buildNumber);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parsePostcodeSectionHeader(const QByteArray & section, const UINT32 parentOffset, const QModelIndex & parent, QModelIndex & index, const bool preparse)
{
// Check sanity
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION))
return ERR_INVALID_SECTION;
// Get data from parent's parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(parent);
// Obtain header fields
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(section.constData());
const POSTCODE_SECTION* postcodeHeader = (const POSTCODE_SECTION*)sectionHeader;
UINT32 headerSize = sizeof(POSTCODE_SECTION);
UINT32 postCode = postcodeHeader->Postcode;
if (pdata.ffsVersion == 3 && uint24ToUint32(sectionHeader->Size) == EFI_SECTION2_IS_USED) {
if ((UINT32)section.size() < sizeof(POSTCODE_SECTION2))
return ERR_INVALID_SECTION;
const POSTCODE_SECTION2* postcodeHeader2 = (const POSTCODE_SECTION2*)sectionHeader;
headerSize = sizeof(POSTCODE_SECTION2);
postCode = postcodeHeader2->Postcode;
}
QByteArray header = section.left(headerSize);
QByteArray body = section.mid(headerSize);
// Get info
QString name = sectionTypeToQString(sectionHeader->Type) + QObject::tr(" section");
QString info = QObject::tr("Type: %1h\nFull size: %2h (%3)\nHeader size: %4h (%5)\nBody size: %6h (%7)\nPostcode: %8h")
.hexarg2(postcodeHeader->Type, 2)
.hexarg(section.size()).arg(section.size())
.hexarg(header.size()).arg(header.size())
.hexarg(body.size()).arg(body.size())
.hexarg(postCode);
// Construct parsing data
pdata.offset += parentOffset;
// Add tree item
if (!preparse) {
index = model->addItem(Types::Section, sectionHeader->Type, name, QString(), info, header, body, FALSE, parsingDataToQByteArray(pdata), parent);
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
if ((UINT32)model->header(index).size() < sizeof(EFI_COMMON_SECTION_HEADER))
return ERR_INVALID_SECTION;
const EFI_COMMON_SECTION_HEADER* sectionHeader = (const EFI_COMMON_SECTION_HEADER*)(model->header(index).constData());
switch (sectionHeader->Type) {
// Encapsulation
case EFI_SECTION_COMPRESSION: return parseCompressedSectionBody(index);
case EFI_SECTION_GUID_DEFINED: return parseGuidedSectionBody(index);
case EFI_SECTION_DISPOSABLE: return parseSections(model->body(index), index);
// Leaf
case EFI_SECTION_FREEFORM_SUBTYPE_GUID: return parseRawArea(model->body(index), index);
case EFI_SECTION_VERSION: return parseVersionSectionBody(index);
case EFI_SECTION_DXE_DEPEX:
case EFI_SECTION_PEI_DEPEX:
case EFI_SECTION_SMM_DEPEX: return parseDepexSectionBody(index);
case EFI_SECTION_TE: return parseTeImageSectionBody(index);
case EFI_SECTION_PE32:
case EFI_SECTION_PIC: return parsePeImageSectionBody(index);
case EFI_SECTION_USER_INTERFACE: return parseUiSectionBody(index);
case EFI_SECTION_FIRMWARE_VOLUME_IMAGE: return parseRawArea(model->body(index), index);
case EFI_SECTION_RAW: return parseRawSectionBody(index);
// No parsing needed
case EFI_SECTION_COMPATIBILITY16:
case SCT_SECTION_POSTCODE:
case INSYDE_SECTION_POSTCODE:
default:
return ERR_SUCCESS;
}
}
STATUS FfsParser::parseCompressedSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
UINT8 algorithm = pdata.section.compressed.compressionType;
// Decompress section
QByteArray decompressed;
QByteArray efiDecompressed;
STATUS result = decompress(model->body(index), algorithm, decompressed, efiDecompressed);
if (result) {
msg(QObject::tr("parseCompressedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
// Check reported uncompressed size
if (pdata.section.compressed.uncompressedSize != (UINT32)decompressed.size()) {
msg(QObject::tr("parseCompressedSectionBody: decompressed size stored in header %1h (%2) differs from actual %3h (%4)")
.hexarg(pdata.section.compressed.uncompressedSize)
.arg(pdata.section.compressed.uncompressedSize)
.hexarg(decompressed.size())
.arg(decompressed.size()), index);
model->addInfo(index, QObject::tr("\nActual decompressed size: %1h (%2)").hexarg(decompressed.size()).arg(decompressed.size()));
}
// Check for undecided compression algorithm, this is a special case
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
// Try preparse of sections decompressed with Tiano algorithm
if (ERR_SUCCESS == parseSections(decompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_TIANO;
}
// Try preparse of sections decompressed with EFI 1.1 algorithm
else if (ERR_SUCCESS == parseSections(efiDecompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_EFI11;
decompressed = efiDecompressed;
}
else {
msg(QObject::tr("parseCompressedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
}
}
// Add info
model->addInfo(index, QObject::tr("\nCompression algorithm: %1").arg(compressionTypeToQString(algorithm)));
// Update data
pdata.section.compressed.algorithm = algorithm;
if (algorithm != COMPRESSION_ALGORITHM_NONE)
model->setCompressed(index, true);
model->setParsingData(index, parsingDataToQByteArray(pdata));
// Parse decompressed data
return parseSections(decompressed, index);
}
STATUS FfsParser::parseGuidedSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
EFI_GUID guid = pdata.section.guidDefined.guid;
// Check if section requires processing
QByteArray processed = model->body(index);
QByteArray efiDecompressed;
QString info;
bool parseCurrentSection = true;
UINT8 algorithm = COMPRESSION_ALGORITHM_NONE;
// Tiano compressed section
if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_TIANO) {
algorithm = EFI_STANDARD_COMPRESSION;
STATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
if (result) {
parseCurrentSection = false;
msg(QObject::tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
// Check for undecided compression algorithm, this is a special case
if (algorithm == COMPRESSION_ALGORITHM_UNDECIDED) {
// Try preparse of sections decompressed with Tiano algorithm
if (ERR_SUCCESS == parseSections(processed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_TIANO;
}
// Try preparse of sections decompressed with EFI 1.1 algorithm
else if (ERR_SUCCESS == parseSections(efiDecompressed, index, true)) {
algorithm = COMPRESSION_ALGORITHM_EFI11;
processed = efiDecompressed;
}
else {
msg(QObject::tr("parseGuidedSectionBody: can't guess the correct decompression algorithm, both preparse steps are failed"), index);
}
}
info += QObject::tr("\nCompression algorithm: %1").arg(compressionTypeToQString(algorithm));
info += QObject::tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
}
// LZMA compressed section
else if (QByteArray((const char*)&guid, sizeof(EFI_GUID)) == EFI_GUIDED_SECTION_LZMA) {
algorithm = EFI_CUSTOMIZED_COMPRESSION;
STATUS result = decompress(model->body(index), algorithm, processed, efiDecompressed);
if (result) {
parseCurrentSection = false;
msg(QObject::tr("parseGuidedSectionBody: decompression failed with error \"%1\"").arg(errorCodeToQString(result)), index);
return ERR_SUCCESS;
}
if (algorithm == COMPRESSION_ALGORITHM_LZMA) {
info += QObject::tr("\nCompression algorithm: LZMA");
info += QObject::tr("\nDecompressed size: %1h (%2)").hexarg(processed.length()).arg(processed.length());
}
else
info += QObject::tr("\nCompression algorithm: unknown");
}
// Add info
model->addInfo(index, info);
// Update data
if (algorithm != COMPRESSION_ALGORITHM_NONE)
model->setCompressed(index, true);
model->setParsingData(index, parsingDataToQByteArray(pdata));
if (!parseCurrentSection) {
msg(QObject::tr("parseGuidedSectionBody: GUID defined section can not be processed"), index);
return ERR_SUCCESS;
}
return parseSections(processed, index);
}
STATUS FfsParser::parseVersionSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Add info
model->addInfo(index, QObject::tr("\nVersion string: %1").arg(QString::fromUtf16((const ushort*)model->body(index).constData())));
return ERR_SUCCESS;
}
STATUS FfsParser::parseDepexSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
QByteArray body = model->body(index);
QString parsed;
// Check data to be present
if (body.size() < 2) { // 2 is a minimal sane value, i.e TRUE + END
msg(QObject::tr("parseDepexSectionBody: DEPEX section too short"), index);
return ERR_DEPEX_PARSE_FAILED;
}
const EFI_GUID * guid;
const UINT8* current = (const UINT8*)body.constData();
// Special cases of first opcode
switch (*current) {
case EFI_DEP_BEFORE:
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section too long for a section starting with BEFORE opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nBEFORE %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
if (*current != EFI_DEP_END){
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
return ERR_SUCCESS;
}
return ERR_SUCCESS;
case EFI_DEP_AFTER:
if (body.size() != 2 * EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)){
msg(QObject::tr("parseDepexSectionBody: DEPEX section too long for a section starting with AFTER opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nAFTER %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
if (*current != EFI_DEP_END) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
return ERR_SUCCESS;
}
return ERR_SUCCESS;
case EFI_DEP_SOR:
if (body.size() <= 2 * EFI_DEP_OPCODE_SIZE) {
msg(QObject::tr("parseDepexSectionBody: DEPEX section too short for a section starting with SOR opcode"), index);
return ERR_SUCCESS;
}
parsed += QObject::tr("\nSOR");
current += EFI_DEP_OPCODE_SIZE;
break;
}
// Parse the rest of depex
while (current - (const UINT8*)body.constData() < body.size()) {
switch (*current) {
case EFI_DEP_BEFORE: {
msg(QObject::tr("parseDepexSectionBody: misplaced BEFORE opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_AFTER: {
msg(QObject::tr("parseDepexSectionBody: misplaced AFTER opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_SOR: {
msg(QObject::tr("parseDepexSectionBody: misplaced SOR opcode"), index);
return ERR_SUCCESS;
}
case EFI_DEP_PUSH:
// Check that the rest of depex has correct size
if ((UINT32)body.size() - (UINT32)(current - (const UINT8*)body.constData()) <= EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID)) {
parsed.clear();
msg(QObject::tr("parseDepexSectionBody: remains of DEPEX section too short for PUSH opcode"), index);
return ERR_SUCCESS;
}
guid = (const EFI_GUID*)(current + EFI_DEP_OPCODE_SIZE);
parsed += QObject::tr("\nPUSH %1").arg(guidToQString(*guid));
current += EFI_DEP_OPCODE_SIZE + sizeof(EFI_GUID);
break;
case EFI_DEP_AND:
parsed += QObject::tr("\nAND");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_OR:
parsed += QObject::tr("\nOR");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_NOT:
parsed += QObject::tr("\nNOT");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_TRUE:
parsed += QObject::tr("\nTRUE");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_FALSE:
parsed += QObject::tr("\nFALSE");
current += EFI_DEP_OPCODE_SIZE;
break;
case EFI_DEP_END:
parsed += QObject::tr("\nEND");
current += EFI_DEP_OPCODE_SIZE;
// Check that END is the last opcode
if (current - (const UINT8*)body.constData() < body.size()) {
parsed.clear();
msg(QObject::tr("parseDepexSectionBody: DEPEX section ends with non-END opcode"), index);
}
break;
default:
msg(QObject::tr("parseDepexSectionBody: unknown opcode"), index);
return ERR_SUCCESS;
break;
}
}
// Add info
model->addInfo(index, QObject::tr("\nParsed expression:%1").arg(parsed));
return ERR_SUCCESS;
}
STATUS FfsParser::parseUiSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
QString text = QString::fromUtf16((const ushort*)model->body(index).constData());
// Add info
model->addInfo(index, QObject::tr("\nText: %1").arg(text));
// Rename parent file
model->setText(model->findParentOfType(index, Types::File), text);
return ERR_SUCCESS;
}
STATUS FfsParser::parseAprioriRawSection(const QByteArray & body, QString & parsed)
{
// Sanity check
if (body.size() % sizeof(EFI_GUID)) {
msg(QObject::tr("parseAprioriRawSection: apriori file has size is not a multiple of 16"));
}
parsed.clear();
UINT32 count = body.size() / sizeof(EFI_GUID);
if (count > 0) {
for (UINT32 i = 0; i < count; i++) {
const EFI_GUID* guid = (const EFI_GUID*)body.constData() + i;
parsed += QObject::tr("\n%1").arg(guidToQString(*guid));
}
}
return ERR_SUCCESS;
}
STATUS FfsParser::parseRawSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Check for apriori file
QModelIndex parentFile = model->findParentOfType(index, Types::File);
QByteArray parentFileGuid = model->header(parentFile).left(sizeof(EFI_GUID));
if (parentFileGuid == EFI_PEI_APRIORI_FILE_GUID) { // PEI apriori file
// Parse apriori file list
QString str;
STATUS result = parseAprioriRawSection(model->body(index), str);
if (!result && !str.isEmpty())
model->addInfo(index, QObject::tr("\nFile list:%1").arg(str));
// Set parent file text
model->setText(parentFile, QObject::tr("PEI apriori file"));
return ERR_SUCCESS;
}
else if (parentFileGuid == EFI_DXE_APRIORI_FILE_GUID) { // DXE apriori file
// Parse apriori file list
QString str;
STATUS result = parseAprioriRawSection(model->body(index), str);
if (!result && !str.isEmpty())
model->addInfo(index, QObject::tr("\nFile list:%1").arg(str));
// Set parent file text
model->setText(parentFile, QObject::tr("DXE apriori file"));
return ERR_SUCCESS;
}
// Parse as raw area
return parseRawArea(model->body(index), index);
}
STATUS FfsParser::parsePeImageSectionBody(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get section body
QByteArray body = model->body(index);
if ((UINT32)body.size() < sizeof(EFI_IMAGE_DOS_HEADER)) {
msg(QObject::tr("parsePeImageSectionBody: section body size is smaller than DOS header size"), index);
return ERR_SUCCESS;
}
QByteArray info;
const EFI_IMAGE_DOS_HEADER* dosHeader = (const EFI_IMAGE_DOS_HEADER*)body.constData();
if (dosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
info += QObject::tr("\nDOS signature: %1h, invalid").hexarg2(dosHeader->e_magic, 4);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid DOS signature"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
const EFI_IMAGE_PE_HEADER* peHeader = (EFI_IMAGE_PE_HEADER*)(body.constData() + dosHeader->e_lfanew);
if (body.size() < (UINT8*)peHeader - (UINT8*)dosHeader) {
info += QObject::tr("\nDOS header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid DOS header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
if (peHeader->Signature != EFI_IMAGE_PE_SIGNATURE) {
info += QObject::tr("\nPE signature: %1h, invalid").hexarg2(peHeader->Signature, 8);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE signature"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
const EFI_IMAGE_FILE_HEADER* imageFileHeader = (const EFI_IMAGE_FILE_HEADER*)(peHeader + 1);
if (body.size() < (UINT8*)imageFileHeader - (UINT8*)dosHeader) {
info += QObject::tr("\nPE header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
info += QObject::tr("\nDOS signature: %1h\nPE signature: %2h\nMachine type: %3\nNumber of sections: %4\nCharacteristics: %5h")
.hexarg2(dosHeader->e_magic, 4)
.hexarg2(peHeader->Signature, 8)
.arg(machineTypeToQString(imageFileHeader->Machine))
.arg(imageFileHeader->NumberOfSections)
.hexarg2(imageFileHeader->Characteristics, 4);
EFI_IMAGE_OPTIONAL_HEADER_POINTERS_UNION optionalHeader;
optionalHeader.H32 = (const EFI_IMAGE_OPTIONAL_HEADER32*)(imageFileHeader + 1);
if (body.size() < (UINT8*)optionalHeader.H32 - (UINT8*)dosHeader) {
info += QObject::tr("\nPE optional header: invalid");
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid PE optional header"), index);
model->addInfo(index, info);
return ERR_SUCCESS;
}
if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR32_MAGIC) {
info += QObject::tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
.hexarg2(optionalHeader.H32->Magic, 4)
.hexarg2(optionalHeader.H32->Subsystem, 4)
.hexarg(optionalHeader.H32->AddressOfEntryPoint)
.hexarg(optionalHeader.H32->BaseOfCode)
.hexarg(optionalHeader.H32->ImageBase);
}
else if (optionalHeader.H32->Magic == EFI_IMAGE_PE_OPTIONAL_HDR64_MAGIC) {
info += QObject::tr("\nOptional header signature: %1h\nSubsystem: %2h\nAddress of entry point: %3h\nBase of code: %4h\nImage base: %5h")
.hexarg2(optionalHeader.H64->Magic, 4)
.hexarg2(optionalHeader.H64->Subsystem, 4)
.hexarg(optionalHeader.H64->AddressOfEntryPoint)
.hexarg(optionalHeader.H64->BaseOfCode)
.hexarg(optionalHeader.H64->ImageBase);
}
else {
info += QObject::tr("\nOptional header signature: %1h, unknown").hexarg2(optionalHeader.H32->Magic, 4);
msg(QObject::tr("parsePeImageSectionBody: PE32 image with invalid optional PE header signature"), index);
}
model->addInfo(index, info);
return ERR_SUCCESS;
}
STATUS FfsParser::parseTeImageSectionBody(const QModelIndex & index)
{
// Check sanity
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get section body
QByteArray body = model->body(index);
if ((UINT32)body.size() < sizeof(EFI_IMAGE_TE_HEADER)) {
msg(QObject::tr("parsePeImageSectionBody: section body size is smaller than TE header size"), index);
return ERR_SUCCESS;
}
QByteArray info;
const EFI_IMAGE_TE_HEADER* teHeader = (const EFI_IMAGE_TE_HEADER*)body.constData();
if (teHeader->Signature != EFI_IMAGE_TE_SIGNATURE) {
info += QObject::tr("\nSignature: %1h, invalid").hexarg2(teHeader->Signature, 4);
msg(QObject::tr("parseTeImageSectionBody: TE image with invalid TE signature"), index);
}
else {
info += QObject::tr("\nSignature: %1h\nMachine type: %2\nNumber of sections: %3\nSubsystem: %4h\nStripped size: %5h (%6)\nBase of code: %7h\nAddress of entry point: %8h\nImage base: %9h\nAdjusted image base: %10h")
.hexarg2(teHeader->Signature, 4)
.arg(machineTypeToQString(teHeader->Machine))
.arg(teHeader->NumberOfSections)
.hexarg2(teHeader->Subsystem, 2)
.hexarg(teHeader->StrippedSize).arg(teHeader->StrippedSize)
.hexarg(teHeader->BaseOfCode)
.hexarg(teHeader->AddressOfEntryPoint)
.hexarg(teHeader->ImageBase)
.hexarg(teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER));
}
// Get data from parsing data
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
pdata.section.teImage.imageBase = teHeader->ImageBase;
pdata.section.teImage.adjustedImageBase = teHeader->ImageBase + teHeader->StrippedSize - sizeof(EFI_IMAGE_TE_HEADER);
// Update parsing data
model->setParsingData(index, parsingDataToQByteArray(pdata));
// Add TE info
model->addInfo(index, info);
return ERR_SUCCESS;
}
2015-07-05 00:20:03 -04:00
STATUS FfsParser::performSecondPass(const QModelIndex & index)
{
// Sanity check
if (!index.isValid() || !lastVtf.isValid())
return ERR_INVALID_PARAMETER;
// Check for compressed lastVtf
if (model->compressed(lastVtf)) {
msg(QObject::tr("performSecondPass: the last VTF appears inside compressed item, the image may be damaged"), lastVtf);
return ERR_SUCCESS;
}
// Get parsing data for the last VTF
PARSING_DATA pdata = parsingDataFromQModelIndex(lastVtf);
// Calculate address difference
const UINT32 vtfSize = model->header(lastVtf).size() + model->body(lastVtf).size() + (pdata.file.hasTail ? sizeof(UINT16) : 0);
const UINT32 diff = 0xFFFFFFFFUL - pdata.offset - vtfSize + 1;
// Apply address information to index and all it's child items
2015-07-05 00:20:03 -04:00
addMemoryAddressesRecursive(index, diff);
return ERR_SUCCESS;
}
STATUS FfsParser::addMemoryAddressesRecursive(const QModelIndex & index, const UINT32 diff)
{
// Sanity check
if (!index.isValid())
return ERR_SUCCESS;
// Set address value for non-compressed data
if (!model->compressed(index)) {
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Check address sanity
if ((const UINT64)diff + pdata.offset <= 0xFFFFFFFFUL) {
// Update info
pdata.address = diff + pdata.offset;
UINT32 headerSize = model->header(index).size();
if (headerSize) {
model->addInfo(index, QObject::tr("\nHeader memory address: %1h").hexarg2(pdata.address, 8));
model->addInfo(index, QObject::tr("\nData memory address: %1h").hexarg2(pdata.address + headerSize, 8));
}
else {
model->addInfo(index, QObject::tr("\nMemory address: %1h").hexarg2(pdata.address, 8));
}
// Special case of uncompressed TE image sections
if (model->type(index) == Types::Section && model->subtype(index) == EFI_SECTION_TE) {
// Check data memory address to be equal to either ImageBase or AdjustedImageBase
if (pdata.section.teImage.imageBase == pdata.address + headerSize) {
pdata.section.teImage.revision = 1;
}
else if (pdata.section.teImage.adjustedImageBase == pdata.address + headerSize) {
pdata.section.teImage.revision = 2;
}
else {
msg(QObject::tr("addMemoryAddressesRecursive: image base is nether original nor adjusted, it's likely a part of backup PEI volume or DXE volume, but can also be damaged"), index);
pdata.section.teImage.revision = 0;
}
}
// Set modified parsing data
model->setParsingData(index, parsingDataToQByteArray(pdata));
}
}
// Process child items
for (int i = 0; i < model->rowCount(index); i++) {
addMemoryAddressesRecursive(index.child(i, 0), diff);
}
return ERR_SUCCESS;
}
STATUS FfsParser::addOffsetsRecursive(const QModelIndex & index)
{
// Sanity check
if (!index.isValid())
return ERR_INVALID_PARAMETER;
// Get parsing data for the current item
PARSING_DATA pdata = parsingDataFromQModelIndex(index);
// Add current offset if the element is not compressed
if (!model->compressed(index)) {
model->addInfo(index, QObject::tr("Offset: %1h\n").hexarg(pdata.offset), false);
}
// Or it's compressed, but it's parent isn't
else if (index.parent().isValid() && !model->compressed(index.parent())) {
model->addInfo(index, QObject::tr("Offset: %1h\n").hexarg(pdata.offset), false);
}
//TODO: show FIT file fixed attribute correctly
model->addInfo(index, QObject::tr("\nCompressed: %1").arg(model->compressed(index) ? QObject::tr("Yes") : QObject::tr("No")));
model->addInfo(index, QObject::tr("\nFixed: %1").arg(model->fixed(index) ? QObject::tr("Yes") : QObject::tr("No")));
// Process child items
for (int i = 0; i < model->rowCount(index); i++) {
addOffsetsRecursive(index.child(i, 0));
}
2015-07-05 00:20:03 -04:00
return ERR_SUCCESS;
}