Atmosphere/stratosphere/creport/source/creport_modules.cpp
2021-11-03 23:56:25 -07:00

448 lines
19 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "creport_modules.hpp"
#include "creport_utils.hpp"
namespace ams::creport {
namespace {
/* Convenience definitions/types. */
constexpr size_t ModulePathLengthMax = 0x200;
constexpr u8 GnuSignature[4] = {'G', 'N', 'U', 0};
struct ModulePath {
u32 zero;
s32 path_length;
char path[ModulePathLengthMax];
};
static_assert(sizeof(ModulePath) == 0x208, "ModulePath definition!");
struct RoDataStart {
union {
u64 deprecated_rwdata_offset;
ModulePath module_path;
};
};
static_assert(sizeof(RoDataStart) == sizeof(ModulePath), "RoDataStart definition!");
/* Globals. */
u8 g_last_rodata_pages[2 * os::MemoryPageSize];
}
void ModuleList::SaveToFile(ScopedFile &file) {
file.WriteFormat(" Number of Modules: %zu\n", m_num_modules);
for (size_t i = 0; i < m_num_modules; i++) {
const auto& module = m_modules[i];
file.WriteFormat(" Module %02zu:\n", i);
file.WriteFormat(" Address: %016lx-%016lx\n", module.start_address, module.end_address);
if (std::strcmp(m_modules[i].name, "") != 0) {
file.WriteFormat(" Name: %s\n", module.name);
}
file.DumpMemory(" Module Id: ", module.module_id, sizeof(module.module_id));
}
}
void ModuleList::FindModulesFromThreadInfo(os::NativeHandle debug_handle, const ThreadInfo &thread, bool is_64_bit) {
/* Set the debug handle, for access in other member functions. */
m_debug_handle = debug_handle;
/* Try to add the thread's PC. */
this->TryAddModule(thread.GetPC(), is_64_bit);
/* Try to add the thread's LR. */
this->TryAddModule(thread.GetLR(), is_64_bit);
/* Try to add all the addresses in the thread's stacktrace. */
for (size_t i = 0; i < thread.GetStackTraceSize(); i++) {
this->TryAddModule(thread.GetStackTrace(i), is_64_bit);
}
}
void ModuleList::TryAddModule(uintptr_t guess, bool is_64_bit) {
/* Try to locate module from guess. */
uintptr_t base_address = 0;
if (!this->TryFindModule(std::addressof(base_address), guess, is_64_bit)) {
return;
}
/* Check whether we already have this module. */
for (size_t i = 0; i < m_num_modules; i++) {
if (m_modules[i].start_address <= base_address && base_address < m_modules[i].end_address) {
return;
}
}
/* Add all contiguous modules. */
uintptr_t cur_address = base_address;
while (m_num_modules < ModuleCountMax) {
/* Get the region extents. */
svc::MemoryInfo mi;
svc::PageInfo pi;
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, cur_address))) {
break;
}
/* Parse module. */
if (mi.permission == svc::MemoryPermission_ReadExecute) {
auto& module = m_modules[m_num_modules++];
module.start_address = mi.base_address;
module.end_address = mi.base_address + mi.size;
GetModuleName(module.name, module.start_address, module.end_address);
GetModuleId(module.module_id, module.end_address);
/* Default to no symbol table. */
module.has_sym_table = false;
if (std::strcmp(module.name, "") == 0) {
/* Some homebrew won't have a name. Add a fake one for readability. */
util::SNPrintf(module.name, sizeof(module.name), "[%02x%02x%02x%02x]", module.module_id[0], module.module_id[1], module.module_id[2], module.module_id[3]);
} else {
/* The module has a name, and so might have a symbol table. Try to add it, if it does. */
if (is_64_bit) {
DetectModuleSymbolTable(module);
}
}
}
/* If we're out of readable memory, we're done reading code. */
if (mi.state == svc::MemoryState_Free || mi.state == svc::MemoryState_Inaccessible) {
break;
}
/* Verify we're not getting stuck in an infinite loop. */
if (mi.size == 0 || cur_address + mi.size <= cur_address) {
break;
}
cur_address += mi.size;
}
}
bool ModuleList::TryFindModule(uintptr_t *out_address, uintptr_t guess, bool is_64_bit) {
AMS_UNUSED(is_64_bit);
/* Query the memory region our guess falls in. */
svc::MemoryInfo mi;
svc::PageInfo pi;
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, guess))) {
return false;
}
/* If we fall into a RW region, it may be rwdata. Query the region before it, which may be rodata or text. */
if (mi.permission == svc::MemoryPermission_ReadWrite) {
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, mi.base_address - 4))) {
return false;
}
}
/* If we fall into an RO region, it may be rodata. Query the region before it, which should be text. */
if (mi.permission == svc::MemoryPermission_Read) {
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, mi.base_address - 4))) {
return false;
}
}
/* We should, at this point, be looking at an executable region (text). */
if (mi.permission != svc::MemoryPermission_ReadExecute) {
return false;
}
/* Modules are a series of contiguous (text/rodata/rwdata) regions. */
/* Iterate backwards until we find unmapped memory, to find the start of the set of modules loaded here. */
while (mi.base_address > 0) {
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, mi.base_address - 4))) {
return false;
}
if (mi.state == svc::MemoryState_Free) {
/* We've found unmapped memory, so output the mapped memory afterwards. */
*out_address = mi.base_address + mi.size;
return true;
}
}
/* Something weird happened here. */
return false;
}
void ModuleList::GetModuleName(char *out_name, uintptr_t text_start_address, uintptr_t ro_start_address) {
/* Clear output. */
std::memset(out_name, 0, ModuleNameLengthMax);
/* Read module path from process memory. */
RoDataStart rodata_start;
{
svc::MemoryInfo mi;
svc::PageInfo pi;
/* Verify .rodata is read-only. */
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, ro_start_address)) || mi.permission != svc::MemoryPermission_Read) {
return;
}
/* Calculate start of rwdata. */
const u64 rw_start_address = mi.base_address + mi.size;
/* Read start of .rodata. */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(rodata_start)), m_debug_handle, ro_start_address, sizeof(rodata_start)))) {
return;
}
/* If data is valid under deprecated format, there's no name. */
if (text_start_address + rodata_start.deprecated_rwdata_offset == rw_start_address) {
return;
}
/* Also validate that we're looking at a valid name. */
if (rodata_start.module_path.zero != 0 || rodata_start.module_path.path_length <= 0) {
return;
}
}
/* Start after last slash in path. */
const char *path = rodata_start.module_path.path;
int ofs;
for (ofs = std::min<size_t>(rodata_start.module_path.path_length, sizeof(rodata_start.module_path.path)); ofs >= 0; ofs--) {
if (path[ofs] == '/' || path[ofs] == '\\') {
break;
}
}
ofs++;
/* Copy name to output. */
const size_t name_size = std::min(ModuleNameLengthMax, std::min<size_t>(rodata_start.module_path.path_length, sizeof(rodata_start.module_path.path)) - ofs);
std::memcpy(out_name, path + ofs, name_size);
out_name[ModuleNameLengthMax - 1] = '\x00';
}
void ModuleList::GetModuleId(u8 *out, uintptr_t ro_start_address) {
/* Clear output. */
std::memset(out, 0, ModuleIdSize);
/* Verify .rodata is read-only. */
svc::MemoryInfo mi;
svc::PageInfo pi;
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, ro_start_address)) || mi.permission != svc::MemoryPermission_Read) {
return;
}
/* We want to read the last two pages of .rodata. */
const size_t read_size = mi.size >= sizeof(g_last_rodata_pages) ? sizeof(g_last_rodata_pages) : (sizeof(g_last_rodata_pages) / 2);
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(g_last_rodata_pages), m_debug_handle, mi.base_address + mi.size - read_size, read_size))) {
return;
}
/* Find GNU\x00 to locate start of module id (GNU build id). */
for (int ofs = read_size - sizeof(GnuSignature) - ModuleIdSize; ofs >= 0; ofs--) {
if (std::memcmp(g_last_rodata_pages + ofs, GnuSignature, sizeof(GnuSignature)) == 0) {
std::memcpy(out, g_last_rodata_pages + ofs + sizeof(GnuSignature), ModuleIdSize);
break;
}
}
}
void ModuleList::DetectModuleSymbolTable(ModuleInfo &module) {
/* If we already have a symbol table, no more parsing is needed. */
if (module.has_sym_table) {
return;
}
/* Declare temporaries. */
u64 temp_64;
u32 temp_32;
/* Get module state. */
svc::MemoryInfo mi;
svc::PageInfo pi;
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, module.start_address))) {
return;
}
const auto module_state = mi.state;
/* Verify .rodata is read-only with same state as .text. */
if (R_FAILED(svc::QueryDebugProcessMemory(std::addressof(mi), std::addressof(pi), m_debug_handle, module.end_address)) || mi.permission != svc::MemoryPermission_Read || mi.state != module_state) {
return;
}
/* Read the first instruction of .text. */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address, sizeof(temp_32)))) {
return;
}
/* We want to find the symbol table/.dynamic. */
uintptr_t dyn_address = 0;
uintptr_t sym_tab = 0;
uintptr_t str_tab = 0;
size_t num_sym = 0;
/* Detect module type. */
if (temp_32 == 0) {
/* Module is dynamically loaded by rtld. */
u32 mod_offset;
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(mod_offset)), m_debug_handle, module.start_address + sizeof(u32), sizeof(u32)))) {
return;
}
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address + mod_offset, sizeof(u32)))) {
return;
}
if (temp_32 != rocrt::ModuleHeaderVersion) { /* MOD0 */
return;
}
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address + mod_offset + sizeof(u32), sizeof(u32)))) {
return;
}
dyn_address = module.start_address + mod_offset + temp_32;
} else if (temp_32 == 0x14000002) {
/* Module embeds rtld. */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address + 0x5C, sizeof(u32)))) {
return;
}
if (temp_32 != 0x94000002) {
return;
}
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address + 0x60, sizeof(u32)))) {
return;
}
dyn_address = module.start_address + 0x60 + temp_32;
} else {
/* Module has unknown format. */
return;
}
/* Locate tables inside .dyn. */
for (size_t ofs = 0; /* ... */; ofs += 0x10) {
/* Read the DynamicTag. */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_64)), m_debug_handle, dyn_address + ofs, sizeof(u64)))) {
return;
}
if (temp_64 == 0) {
/* We're done parsing .dyn. */
break;
} else if (temp_64 == 4) {
/* We found DT_HASH */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_64)), m_debug_handle, dyn_address + ofs + sizeof(u64), sizeof(u64)))) {
return;
}
/* Read nchain, to get the number of symbols. */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_32)), m_debug_handle, module.start_address + temp_64 + sizeof(u32), sizeof(u32)))) {
return;
}
num_sym = temp_32;
} else if (temp_64 == 5) {
/* We found DT_STRTAB */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_64)), m_debug_handle, dyn_address + ofs + sizeof(u64), sizeof(u64)))) {
return;
}
str_tab = module.start_address + temp_64;
} else if (temp_64 == 6) {
/* We found DT_SYMTAB */
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(temp_64)), m_debug_handle, dyn_address + ofs + sizeof(u64), sizeof(u64)))) {
return;
}
sym_tab = module.start_address + temp_64;
}
}
/* Check that we found all the tables. */
if (!(sym_tab != 0 && str_tab != 0 && num_sym != 0)) {
return;
}
module.has_sym_table = true;
module.sym_tab = sym_tab;
module.str_tab = str_tab;
module.num_sym = static_cast<u32>(num_sym);
}
const char *ModuleList::GetFormattedAddressString(uintptr_t address) {
/* Print default formatted string. */
util::SNPrintf(m_address_str_buf, sizeof(m_address_str_buf), "%016lx", address);
/* See if the address is inside a module, for pretty-printing. */
for (size_t i = 0; i < m_num_modules; i++) {
const auto& module = m_modules[i];
if (module.start_address <= address && address < module.end_address) {
if (module.has_sym_table) {
/* Try to locate an appropriate symbol. */
for (size_t j = 0; j < module.num_sym; ++j) {
/* Read symbol from the module's symbol table. */
struct {
u32 st_name;
u8 st_info;
u8 st_other;
u16 st_shndx;
u64 st_value;
u64 st_size;
} sym;
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(std::addressof(sym)), m_debug_handle, module.sym_tab + j * sizeof(sym), sizeof(sym)))) {
break;
}
/* Check the symbol is valid/STT_FUNC. */
if (sym.st_shndx == 0 || ((sym.st_shndx & 0xFF00) == 0xFF00)) {
continue;
}
if ((sym.st_info & 0xF) != 2) {
continue;
}
/* Check the address. */
const uintptr_t func_start = module.start_address + sym.st_value;
if (func_start <= address && address < func_start + sym.st_size) {
/* Read the symbol name. */
const uintptr_t sym_address = module.str_tab + sym.st_name;
char sym_name[0x80];
if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(sym_name), m_debug_handle, sym_address, sizeof(sym_name)))) {
break;
}
/* Ensure null-termination. */
sym_name[sizeof(sym_name) - 1] = '\x00';
/* Print the symbol. */
util::SNPrintf(m_address_str_buf, sizeof(m_address_str_buf), "%016lx (%s + 0x%lx) (%s + 0x%lx)", address, module.name, address - module.start_address, sym_name, address - func_start);
return m_address_str_buf;
}
}
}
util::SNPrintf(m_address_str_buf, sizeof(m_address_str_buf), "%016lx (%s + 0x%lx)", address, module.name, address - module.start_address);
return m_address_str_buf;
}
}
return m_address_str_buf;
}
}