/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include namespace ams::util { /* Implementation of TinyMT (mersenne twister RNG). */ /* Like Nintendo, we will use the sample parameters. */ class TinyMT { public: static constexpr size_t NumStateWords = 4; struct State { u32 data[NumStateWords]; }; private: static constexpr u32 ParamMat1 = 0x8F7011EE; static constexpr u32 ParamMat2 = 0xFC78FF1F; static constexpr u32 ParamTmat = 0x3793FDFF; static constexpr u32 ParamMult = 0x6C078965; static constexpr u32 ParamPlus = 0x0019660D; static constexpr u32 ParamXor = 0x5D588B65; static constexpr u32 TopBitmask = 0x7FFFFFFF; static constexpr int MinimumInitIterations = 8; static constexpr int NumDiscardedInitOutputs = 8; private: State state; private: /* Internal API. */ void FinalizeInitialization(); u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); } static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value); static void GenerateInitialValueXor(TinyMT::State *state, int index); public: /* Public API. */ /* Initialization. */ void Initialize(u32 seed); void Initialize(const u32 *seed, int seed_count); /* State management. */ void GetState(TinyMT::State *out) const; void SetState(const TinyMT::State *state); /* Random generation. */ void GenerateRandomBytes(void *dst, size_t size); u32 GenerateRandomU32(); inline u64 GenerateRandomU64() { const u32 lo = this->GenerateRandomU32(); const u32 hi = this->GenerateRandomU32(); return (static_cast(hi) << 32) | static_cast(lo); } inline float GenerateRandomF32() { /* Floats have 24 bits of mantissa. */ constexpr int MantissaBits = 24; return GenerateRandomU24() * (1.0f / (1ul << MantissaBits)); } inline double GenerateRandomF64() { /* Doubles have 53 bits of mantissa. */ /* The smart way to generate 53 bits of random would be to use 32 bits */ /* from the first rnd32() call, and then 21 from the second. */ /* Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32() */ /* call, and (32 - 6) bits from the second. We'll do what they do, but */ /* There's not a clear reason why. */ constexpr int MantissaBits = 53; constexpr int Shift1st = (64 - MantissaBits) / 2; constexpr int Shift2nd = (64 - MantissaBits) - Shift1st; const u32 first = (this->GenerateRandomU32() >> Shift1st); const u32 second = (this->GenerateRandomU32() >> Shift2nd); return (1.0 * first * (1ul << (32 - Shift2nd)) + second) * (1.0 / (1ul << MantissaBits)); } }; }