/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include namespace ams::kern { namespace { ALWAYS_INLINE bool ReadFromUser(s32 *out, KProcessAddress address) { return UserspaceAccess::CopyMemoryFromUserSize32Bit(out, GetVoidPointer(address)); } ALWAYS_INLINE bool DecrementIfLessThan(s32 *out, KProcessAddress address, s32 value) { KScopedInterruptDisable di; if (!cpu::CanAccessAtomic(address)) { return false; } return UserspaceAccess::DecrementIfLessThanAtomic(out, GetPointer(address), value); } ALWAYS_INLINE bool UpdateIfEqual(s32 *out, KProcessAddress address, s32 value, s32 new_value) { KScopedInterruptDisable di; if (!cpu::CanAccessAtomic(address)) { return false; } return UserspaceAccess::UpdateIfEqualAtomic(out, GetPointer(address), value, new_value); } } Result KAddressArbiter::Signal(uintptr_t addr, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; g_cv_arbiter_compare_thread.SetupForAddressArbiterCompare(addr, -1); auto it = this->tree.nfind(g_cv_arbiter_compare_thread); while ((it != this->tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { KThread *target_thread = std::addressof(*it); target_thread->SetSyncedObject(nullptr, ResultSuccess()); AMS_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->Wakeup(); it = this->tree.erase(it); target_thread->ClearAddressArbiter(); ++num_waiters; } } return ResultSuccess(); } Result KAddressArbiter::SignalAndIncrementIfEqual(uintptr_t addr, s32 value, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; g_cv_arbiter_compare_thread.SetupForAddressArbiterCompare(addr, -1); auto it = this->tree.nfind(g_cv_arbiter_compare_thread); /* Check the userspace value. */ s32 user_value; R_UNLESS(UpdateIfEqual(std::addressof(user_value), addr, value, value + 1), svc::ResultInvalidCurrentMemory()); R_UNLESS(user_value == value, svc::ResultInvalidState()); while ((it != this->tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { KThread *target_thread = std::addressof(*it); target_thread->SetSyncedObject(nullptr, ResultSuccess()); AMS_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->Wakeup(); it = this->tree.erase(it); target_thread->ClearAddressArbiter(); ++num_waiters; } } return ResultSuccess(); } Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(uintptr_t addr, s32 value, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; g_cv_arbiter_compare_thread.SetupForAddressArbiterCompare(addr, -1); auto it = this->tree.nfind(g_cv_arbiter_compare_thread); /* Determine the updated value. */ s32 new_value; if (count <= 0) { if ((it != this->tree.end()) && (it->GetAddressArbiterKey() == addr)) { new_value = value - 1; } else { new_value = value + 1; } } else { auto tmp_it = it; int tmp_num_waiters = 0; while ((tmp_it != this->tree.end()) && (tmp_it->GetAddressArbiterKey() == addr) && (tmp_num_waiters < count + 1)) { ++tmp_num_waiters; ++tmp_it; } if (tmp_num_waiters == 0) { new_value = value + 1; } else if (tmp_num_waiters <= count) { new_value = value - 1; } else { new_value = value; } } /* Check the userspace value. */ s32 user_value; bool succeeded; if (value != new_value) { succeeded = UpdateIfEqual(std::addressof(user_value), addr, value, new_value); } else { succeeded = ReadFromUser(std::addressof(user_value), addr); } R_UNLESS(succeeded, svc::ResultInvalidCurrentMemory()); R_UNLESS(user_value == value, svc::ResultInvalidState()); while ((it != this->tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { KThread *target_thread = std::addressof(*it); target_thread->SetSyncedObject(nullptr, ResultSuccess()); AMS_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->Wakeup(); it = this->tree.erase(it); target_thread->ClearAddressArbiter(); ++num_waiters; } } return ResultSuccess(); } Result KAddressArbiter::WaitIfLessThan(uintptr_t addr, s32 value, bool decrement, s64 timeout) { /* Prepare to wait. */ KThread *cur_thread = GetCurrentThreadPointer(); KHardwareTimer *timer; { KScopedSchedulerLockAndSleep slp(std::addressof(timer), cur_thread, timeout); /* Check that the thread isn't terminating. */ if (cur_thread->IsTerminationRequested()) { slp.CancelSleep(); return svc::ResultTerminationRequested(); } /* Set the synced object. */ cur_thread->SetSyncedObject(nullptr, ams::svc::ResultTimedOut()); /* Read the value from userspace. */ s32 user_value; bool succeeded; if (decrement) { succeeded = DecrementIfLessThan(std::addressof(user_value), addr, value); } else { succeeded = ReadFromUser(std::addressof(user_value), addr); } if (!succeeded) { slp.CancelSleep(); return svc::ResultInvalidCurrentMemory(); } /* Check that the value is less than the specified one. */ if (user_value >= value) { slp.CancelSleep(); return svc::ResultInvalidState(); } /* Check that the timeout is non-zero. */ if (timeout == 0) { slp.CancelSleep(); return svc::ResultTimedOut(); } /* Set the arbiter. */ cur_thread->SetAddressArbiter(std::addressof(this->tree), addr); this->tree.insert(*cur_thread); cur_thread->SetState(KThread::ThreadState_Waiting); } /* Cancel the timer wait. */ if (timer != nullptr) { timer->CancelTask(cur_thread); } /* Remove from the address arbiter. */ { KScopedSchedulerLock sl; if (cur_thread->IsWaitingForAddressArbiter()) { this->tree.erase(this->tree.iterator_to(*cur_thread)); cur_thread->ClearAddressArbiter(); } } /* Get the result. */ KSynchronizationObject *dummy; return cur_thread->GetWaitResult(std::addressof(dummy)); } Result KAddressArbiter::WaitIfEqual(uintptr_t addr, s32 value, s64 timeout) { /* Prepare to wait. */ KThread *cur_thread = GetCurrentThreadPointer(); KHardwareTimer *timer; { KScopedSchedulerLockAndSleep slp(std::addressof(timer), cur_thread, timeout); /* Check that the thread isn't terminating. */ if (cur_thread->IsTerminationRequested()) { slp.CancelSleep(); return svc::ResultTerminationRequested(); } /* Set the synced object. */ cur_thread->SetSyncedObject(nullptr, ams::svc::ResultTimedOut()); /* Read the value from userspace. */ s32 user_value; if (!ReadFromUser(std::addressof(user_value), addr)) { slp.CancelSleep(); return svc::ResultInvalidCurrentMemory(); } /* Check that the value is equal. */ if (value != user_value) { slp.CancelSleep(); return svc::ResultInvalidState(); } /* Check that the timeout is non-zero. */ if (timeout == 0) { slp.CancelSleep(); return svc::ResultTimedOut(); } /* Set the arbiter. */ cur_thread->SetAddressArbiter(std::addressof(this->tree), addr); this->tree.insert(*cur_thread); cur_thread->SetState(KThread::ThreadState_Waiting); } /* Cancel the timer wait. */ if (timer != nullptr) { timer->CancelTask(cur_thread); } /* Remove from the address arbiter. */ { KScopedSchedulerLock sl; if (cur_thread->IsWaitingForAddressArbiter()) { this->tree.erase(this->tree.iterator_to(*cur_thread)); cur_thread->ClearAddressArbiter(); } } /* Get the result. */ KSynchronizationObject *dummy; return cur_thread->GetWaitResult(std::addressof(dummy)); } }